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ABSTRACT

A progressive web application (PWA) becomes an attractive op-
tion for building universal applications based on feature-rich web
Application Programming Interfaces (APIs). While flexible, such
vast APIs inevitably bring a significant increase in an API attack
surface, which commonly corresponds to a functionality that is
neither needed nor wanted by the application. A promising ap-
proach to reduce the API attack surface is software debloating, a
technique wherein an unused functionality is programmatically
removed from an application. Unfortunately, debloating PWAs is
challenging, given the monolithic design and non-deterministic exe-
cution of a modern web browser. In this paper, we present DeView,
a practical approach that reduces the attack surface of a PWA by
blocking unnecessary but accessible web APIs. DeView tackles the
challenges of PWA debloating by i) record-and-replay web API pro-

filing that identifies needed web APIs on an app-by-app basis by
replaying (recorded) browser interactions and ii) compiler-assisted

browser debloating that eliminates the entry functions of corre-
sponding web APIs from the mapping between web API and its
entry point in a binary. Our evaluation shows the effectiveness and
practicality of DeView. DeView successfully eliminates 91.8% of
accessible web APIs while i) maintaining original functionalities
and ii) preventing 76.3% of known exploits on average.
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1 INTRODUCTION

Building a web application to provide a service becomes an at-
tractive option for both desktop and mobile developers [89, 93]
because web Application Programming Interfaces (APIs) can offer
nearly complete features while being independent of a platform.
Furthermore, unlike a conventional software life cycle that entails
rebuilding and redistributing an application (e.g., via app-store) for
different platforms, web application development enables quick
updates and deployments because a web browser transparently
fetches and runs updated web applications.

Aside from such advantages, web applications have a few lim-
itations, such as the absence of 1 access to underlying system
services and hardware, 2 persistent client-side storage for offline
operations, and 3 application meta-data (e.g., name, description,
and version). In response, a hybrid approach has been introduced
to complement the above shortcomings by allowing a native ap-
plication to harness web APIs via an embedded system service
(e.g., WebView [27, 46, 58, 65, 70]) or a standalone framework (e.g.,
Electron [41]). However, such approaches provide additional func-
tionality at the expense of platform independence because its native
portion is still tightly coupled with an underlying platform. More-
over, building a desktop application with Electron [41] maintains
its copies by design.

A progressive web application (PWA) [92] is a recent effort to
build native-like applications with web technologies. The core en-
abler of a PWA is the HTML5 features [122] that 1 access system
services and hardware (e.g., WebAudio [1], WebRTC [61], WebUSB [47]),
2 hold a resource offline within persistent browser-side storage
(e.g., Storage [3], Service Worker [102]), and 3 describe applica-
tion information separately (e.g., Web Application Manifest [36]).
In this respect, PWAs gained in popularity on both desktop and mo-
bile platforms [94], expecting to surpass 10 billion USD by 2027 [59]
in a global market. Quite a few native applications have turned into
PWAs [14, 114, 119]. Figure 1 is a PWA example whose appear-
ance looks after a native application, which can be simply installed
through a browser like Figure 2.
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Figure 1: A real-world PWA

example.

Figure 2: A PWA can be in-

stalled with a ‘+ ’ button in a

Chromium address bar (red-

circled).

Unfortunately, a PWA has security problems that it inherits from
a web application in addition to new problems due to sharing the
same web runtime (e.g., a Chromium renderer that implements
web APIs) across PWAs. A PWA is principally a web application
with extended features. Thus, it could be vulnerable to conventional
web attacks like cross-site scripting (XSS) [4, 23, 62, 81, 109] and sup-
ply chain attacks against dependent, external resources [106, 127].
Moreover, the impact of a successful exploitation can be exacerbated
because PWAs installed on the same device hold identical attack
surfaces. A compromised PWA can leverage any web APIs to attack
the underlying web browser instance or other web applications.
For example, several memory corruption vulnerabilities have been
found in web APIs like WebAudio, WebRTC, and WebUSB [115–117].
A compromised PWA can freely access such vulnerable web APIs
even though it does not require any of the web APIs at all for its in-
tended operations (e.g., a Starbucks PWA does not require WebUSB).
Our finding shows extensive API bloating in many PWAs; 90% of
them utilize 15% or below of all web APIs available, which can pose
a severe threat (§3.1).

One practical and effective mitigation technique to reduce such
an attack surface is software debloating [8, 96, 97], which identifies
and eliminates an unused functionality (i.e., web API). A browser-
debloating technique is quite challenging due to the following rea-
sons. First, the monolithic design of the browser makes it difficult
to take a separate feature apart. Slimium [97] defines 164 distinct
Chromium features containing at least 142,968 functions (around
40.1MB), which is yet far from a complete feature set. Second, iden-
tifying the set of web APIs per PWA is non-trivial because 1 static
analysis of an untyped scripting language (i.e., HTML, CSS and
JavaScript) is difficult [103]; 2 a web browser may have its own
(non-standard) web API; and 3 obfuscation techniques [12, 113]
may contain redundant code for browser compatibility [82]. Further,
our finding shows that the previous strategy [108] that eliminates
high-cost and low-benefit web APIs cannot be directly applied to
PWA because the web API distribution of a PWA differs from that
of a conventional web application.

In this paper, we present DeView, a lightweight (but effective
and efficient) debloating approach that reduces the attack surface
of each PWA by narrowing down accessible web APIs. To this end,
we devise two main techniques: record-and-replay web API profiling
that identifies a set of web APIs a PWA demands and compiler-

assisted code debloating that removes the web API entry functions.
First, DeView records varying execution paths from unit tests and
test cases written by the application developer, followed by collect-
ing a set of web APIs by replaying the paths per PWA. Identifying
code coverage from such test cases by the original developer assists

in ensuring the intended features of an application are adequately
covered (i.e., minimizing unexpected removal). Second, DeView
instruments part of common libraries of a web browser at com-
pilation time, producing a tailored version of those libraries that
allows for the subset of web APIs. After removing 91.8% of un-
needed web APIs with DeView, we can successfully thwart 76.3%
of 478 known Common Vulnerabilities and Exposures (CVEs) per-
taining to web API exploits, while features (from test cases) at a
debloated PWA version have been seamless in our experiment.

The contributions of our work are as follows.
• We introduce DeView, a lightweight and practical PWA debloat-
ing approach that reduces its attack surface by trimming unnec-
essary web APIs.

• We design and implement the prototype of DeView with the
two key techniques: record-and-replay web API profiling, irre-
spective of the complexity and implementation-specific features
of a web browser, and compiler-assisted code debloating that
eliminates the entry of unneeded web APIs.

• We evaluate DeView over 114 popular real-world PWAs. Our
empirical results demonstrate the practicality and effectiveness of
DeView by discarding over 90% of unneeded web APIs, thereby
defeating 76% of known exploits.

We have open-sourced DeView1 to foster the field of software
debloating in the future.

2 BACKGROUND

This section describes a progressive web application, web API, and
web interface description language.
Progressive Web Application. A PWA [92] is a new web tech-
nology to build a platform-independent universal application. It
offers 1 handy installability (i.e., one-click installation from a
browser in Figure 2), 2 smooth transition at a low cost from a
web to a native application, 3 quick responsiveness, and 4 an
indistinguishable appearance from a native application [101]. The
key enablers of a PWA are the following HTML5 web technolo-
gies. First, Service Worker [7, 102] represents a worker thread that
runs a particular JavaScript file in the background, allowing for
caching PWA contents. A PWA leverages the worker as a network
proxy to handle push notifications, updates, and network requests
even under an inactive status. The events that a PWA can mon-
itor via the worker include installing, installed, activating,
activated, and redundant. Second, a push notification allows a
remote server to directly push and notify a message to its recipients
even when a PWA is offline. Third, Web App Manifest specifies a
JSON file containing various PWA information (e.g., name, icon,
launching URL), making a web application installable and discov-
erable. Lastly, client-side storage (i.e., IndexedDB, Cache Storage)
allows a PWA to store data in persistent storage.
Web API and Security. A web API is a communication interface
between a web application and a web browser. PWAs utilize the
standard web APIs [118], encompassing both dynamic JavaScript
APIs and other static APIs that handle HTML tags and CSS prop-
erties [31]. Oftentimes, adversaries attempt to exploit vulnerable
web APIs via varying web attacks such as XSS [75] and Universal

1https://github.com/shivamidow/deview

882



DeView: Confining Progressive Web Applications by Debloating Web APIs ACSAC ’22, December 5–9, 2022, Austin, TX, USA

Figure 3: Cumulative distribution of PWAs according to

the popularity of required web APIs. Adopting unpopular

web APIs in a PWA is common.

XSS [81], which mostly leverage JavaScript. Moreover, HTML tags
and CSS properties can be weaponized [4, 23] as well. A successful
web attack can disarm the browser’s security protection mecha-
nisms like the same-origin policy (SOP) and underlying sandbox,
allowing adversaries to exfiltrate the victim’s sensitive data or lure
a victim into visiting a suspicious page [56]. In this respect, we aim
to restrict web APIs that each PWA can use to reduce the potential
risk of a compromised PWA.
Web Interface Description Language. WebIDL [74] is an inter-
face description language that specifies each web API. While W3C
standardizes specifications on WebIDL, each web browser vendor ex-
tends it with customized attributes and features [25, 28, 30]. WebIDL
plays a pivotal role in binding the entry point of a web API (i.e.,
HTML tags, CSS properties, JavaScript APIs) to an underlying na-
tive implementation (mostly written in C++). In this paper, we
leverage WebIDL to find the corresponding implementations of a
web API for further debloating.

3 PRELIMINARIES

3.1 Web APIs in a PWA

We investigate the usage of web APIs (i.e., distribution and similar-
ity) in 114 PWAs (§6.1), comparing it with that of a conventional
web application. This section describes the direction that motivates
us to propose a debloating technique tailored for a PWA.
Popularity Distribution of Web APIs used by PWAs. Previ-
ous studies [97, 107, 108] find that most legitimate web applica-
tions use similar web APIs. Thus, they can secure web browsers
by removing unpopular web APIs without significant incompatibil-
ity problems. However, such a popularity-based strategy does not
work for PWAs because they frequently use unique web APIs. We
investigate the distribution of web APIs that 114 different PWAs
adopt.We collect 8,249 web APIs in total from the popularity data of
features (featurepopularity.json) and CSS (csspopularity.json)
from chromestatus2 [22] and check how or whether the collected
PWAs use them. Figure 3 shows the cumulative distribution of the
PWAs according to the adoption of unpopular web APIs. We define
a non-popular web API when it has been adopted by less than or
equal to 𝑘% (e.g., k=1 and k=10) of the whole PWA applications
in our dataset. We confirm that around 50% of the PWAs employ

2Chromestatus officially collects the statistics of web API usages from anonymous
Google Chrome users during the last 24 hours. We extract property_name and
day_percentage fields of each web API from the json file. As the property_name
represents a Chromium’s internal function, replacing it with a standard web API.

Figure 4: Distribution of PWAs according to the classes of

required web APIs suggested by Snyder et al. [108].

Figure 5: Jaccard indexes of PWA pairs. The blue color domi-

nates the heatmap, meaning most PWA pairs in our dataset

do not have similar web APIs in common.

at least 20 web APIs that hold ≤1% in popularity and at least 60
web APIs that hold ≤10% in popularity.
Adoption of a Previous Approach. According to Snyder et
al. [108], high-cost and low-benefit web APIs are removable be-
cause web applications barely use certain classes of high-cost
web APIs (e.g., Scalable Vector Graphics (SVG), Web Audio (WEBA),
Web GL (WEBGL), Web RTC (WRTC)) in most cases. We analyze 114
PWAs to know whether Snyder et al.’s finding is applicable to them.
To this end, we classify the unpopular web APIs (≤1% in popularity)
into the same categories as Snyder et al. However, our observation
indicates that their finding does not work for the 114 PWAs because,
unlike typical web applications, they frequently adopt high-cost
and low-benefit web APIs (Figure 4). For example, 63.16%, 17.54%,
15.79%, and 8.77% of the PWAs use SVG, WEBA, WEBGL, and WRTC, re-
spectively.
Unique Web API Usage Between PWAs. We study whether the
web API usage patterns of 114 PWAs are similar to each other. We
use the Jaccard index [121] to measure their similarity. The heatmap
in Figure 5 illustrates Jaccard indexes between each unique pair
of the PWAs. A red cell (Jaccard index is 1) represents that a pair
of PWAs employs an identical set of web APIs, whereas a blue
cell (Jaccard index is 0) represents that a pair of PWAs employs a
completely different set of web APIs. The Jaccard index is 0.36 on
average, while the minimum and maximum values hold 0.06 and
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Figure 6: Cumulative distribution of PWA web API usage

ratios over total web APIs used by at least one PWA.

0.82, respectively. The result shows that most PWAs have a unique
set of required web APIs.
Building Common Debloated Browsers for PWAs. Like pre-
vious studies [97, 107, 108], one might want to build a single or
a small number of web browser instance(s) that can support all
or most PWAs but are less bloated than a pristine web browser.
Figure 6 depicts the cumulative distribution of the web API ratio
where each PWA uses over the union of web APIs that at least
one PWA uses. The 114 PWAs in our dataset adopt 3,296 distinct
web APIs in total, but approximately 90% of the PWAs utilize less
than 40% of the 3,296 web APIs. This implies that a single debloated
browser that covers all PWAs (i.e., supports 3,296 web APIs) is still
highly bloated (i.e., at most 40% of supported web APIs are used in
general).
Summary of Our Findings. The above findings conclude that
1 the web API usage of PWAs considerably differs from each other
as well as that of a web application, 2 a debloating strategy based
on web API popularity does not work for PWAs, 3 unpopular
web APIs of PWAs play amore pivotal role than those of typical web
applications, and 4 each PWA necessitates a different debloating
rule due to its unique web API usage.

3.2 Challenges

Monolithic Design. A browser keeps including additional features
in the form of web APIs [22, 32] to meet users’ demands. Modern
web browser vendors create new web standards beyond just com-
plying with existing ones [123] while being compatible with legacy
and non-standard features, which inevitably enlarges an attack
surface. Modularizing each web API would be ideal for security by
reducing the impact of a single web API compromise on others,
but a vast number of web APIs make such modularization imprac-
tical for performance concerns. A recent effort for attack surface
reduction is Permissions Policy [26] by letting a web application
selectively enable needed web APIs on demand. However, the pol-
icy feature is insufficient because 1 not all web browsers support
it [40], 2 it cannot allow one to configure a fine-grained feature
compartment, and 3 a web API exploit can potentially bypass it.
Precise Identification of Web APIs. For successful confinement,
obtaining the precise list of web APIs that each PWA requires is
necessary. However, in general, even developers cannot statically
figure out comprehensive web API usages due to the dynamic na-
ture of writing web content and browsers. First, a static analysis
of JavaScript is challenging because it allows one to 1 override a
function and object, 2 execute a string with an eval function at

runtime, 3 manipulate both DOM and CSS on the fly, and 4 ob-
fuscate codes with a mangler or compressor [12, 113]. Although
the static analysis of a scripting language is not impossible, it is
quite slow [63]. Second, the browser-specific behavior of a cer-
tain web API can trigger a different set of web APIs. For example,
polyfill [82] enables one to address issues with branch statements
that handle vendor prefixes [85] by having different browsers imple-
ment an identical functionality in a different manner (i.e., different
web API invocation). A recent study from Sarker et al. [103] shows
that static analysis cannot precisely analyze mangled web APIs.
Therefore, we adopt a dynamic approach that achieves both high
accuracy and scalability in practice.

3.3 Threat Model

The following shows a conceivable attack scenario. Assume that
a victim uses an Uber PWA to commute. Before choosing a driver,
one checks a driver’s reputation for safety reasons. Suppose that a
vulnerability were present in a text input form (due to the lack of
input sanitization) for commenting on a driver at the Uber PWA. In
that case, an adversary can exfiltrate sensitive data by injecting a
malicious code (e.g., WebUSBAPI). For example, a secret token stored
in the victim’s USB drive could be leaked when the victim reads the
adversary’s comment. In this scenario, an adversary conducts a web
attack against a PWA or the underlying browser instance with the
following two steps. First, the adversary prepares a malicious code
in the context of a victim PWA (e.g., via code injection or reuse)
by exploiting a vulnerability in the PWA, a browser engine, or a
server-side code. Next, the adversary executes the malicious code
that misuses a web API, being able to take complete control over
the PWA or the browser engine.

This paper focuses on preventing or mitigating this critical sec-
ond step by restricting each PWA’s web API. The malicious code
might exploit other vulnerabilities unrelated to web APIs, but it
is beyond this paper’s scope. Moreover, DeView aims to prevent
web API misuse attacks from happening inside the PWA scope [87].
So, any attack with external resources that are loaded in the main
frame or the iframe within a PWA can be prevented if its exploita-
tion entails a disallowed web API. However, such an attack out
of the PWA (e.g., a separate window) is out of our threat model.
Like other debloating or sandbox mechanisms, PWA developers
determine which web APIs each PWA shall use.

4 DEVIEW DESIGN

In this section, we describe the design of DeView.

4.1 Design Overview

DeView largely consists of three components: 1 web browser in-
strumentation that identifies entry web API functions (by a browser
vendor), 2 web API usage profiling based on a record-and-replay
technique (by a PWA developer), and 3 on-demand browser engine
debloating (by an end-user program).

Figure 7 shows the overall processes of DeView. 1 A PWA de-
veloper records user interactions (using pre-defined unit test cases)
with a web browser behavior recording tool, which translates the
behaviors into web browser instructions. The developer replays the
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Figure 7: Overall procedure of DeView. 1 DeView instruments a web browser to profile exercised web APIs. 2 A PWA

developer dynamically collects a list of needed web APIs. 3 An installer program at the end user debloats the browser library

along with the list of required web APIs. 4 DeView launches the debloated PWA.

recorded instructions on an instrumented browser instance to mon-
itor web API usages and generates a list of required web APIs for
the PWA. 2 A server sends a PWA along with its web API list to an
end-user upon an install or update request. 3 An installer program
at the end-user generates the debloated version of a browser en-
gine library with the web API list for the PWA. 4 Running a PWA
simply launches a browser with the debloated library. DeView re-
performs the above debloating processes in case of a PWA update
via the Service Worker’s install event [7].

4.2 Web API Library Separation

DeView restricts each PWA’s web API by debloating the under-
lying web browser. However, debloating the whole web browser
is challenging because it is huge, complex software [97]. Instead,
DeView decouples a core browser engine that contains the entry
points of all web APIs from the main browser and debloats the core
browser engine as shared libraries (i.e., trim the entry points of
unnecessary web APIs §4.5). On the end-user side, DeView main-
tains debloated libraries per PWA to confine each PWA’s web API
usage separately and to refine or replace the libraries if a PWA or
its web API list is changed.

4.3 Web Browser Instrumentation

We instrument a web browser to identify exercised web APIs with
PWA profiling. The entry function of each web API resides in a part
of the browser engine libraries, which will be debloated on demand.
DeView first recognizes native functions that correspond to an
individual web API based on a WebIDL binding rule, followed by
instrumenting the web browser for web API profiling. In particular,
DeView maintains the location of native functions and their sizes
for the instrumented browser, which are utilized for later debloating.
Note that the instrumentation is a one-time process for a target
browser version.

4.4 Web API Usage Profiling

DeView profiles what web APIs are required to run a PWA when
it is newly created or updated. DeView first runs a PWA with
given unit test cases or a manual test scenario while recording
all browser interactions using a Headless recorder [17]. Then, it
replays the recorded browser interactions on the instrumented web

1 const puppeteer = require(’puppeteer’);
2 (async () => {
3 const browser = await puppeteer.launch();
4 const page = await browser.newPage();
5
6 // Launch the starbucks app in the viewport of 952x1021
7 await page.goto(
8 ’https://app.starbucks.com/?utm_source=homescreen’);
9 await page.setViewport({width: 952, height: 1021});
10
11 // Wait for a text link and click it.
12 await page.waitForSelector(’.flex > .globalNav > .textLink’);
13 await page.click(’.flex > .globalNav > .textLink’);
14
15 // Wait for a form, activate it by click,
16 // and type 30332 in the form.
17 await page.waitForSelector(’.header > .controls > .form’);
18 await page.click(’.header > .controls > .form’);
19 await page.type(’.header > .controls > .form’, ’30332’);
20
21 await browser.close();
22 })();

Figure 8: A simplified example of recorded browser instruc-

tions for the puppeteer. DeView sequentially replays the

instructions for reproducing keyboard and mouse events

(Line 18–19), enabling one to profile web APIs after a sign-in.

browser using a browser automation tool, Puppeteer [38]. When a
web API is firstly accessed, the instrumented web browser updates
a bit array where each bit represents whether a corresponding
web API is accessed. After the replay finishes, DeView creates a
list of required web APIs based on the final bit array.

Our record-and-replay profiling technique has advantages over
conventional dynamic analysis based on event-driven unit tests
and static analysis. First, it is scalable to various platforms because
recorded browser interactions can be replayed on various web
browsers that conform to the WebDriver specification [110] while
even capturing vendor- or version-specific non-standard web API
usages. Second, it is reliable and robust for profiling web API that a
PWA exercises. As recorded behaviors can be consistently executed
with Promise, the profiling result does not suffer from any race
condition issue between a layout and an input, or the effect of non-
deterministic behaviors within a browser engine [97]. Third, it is
handy to carry out a comprehensive test for identifying exercised
web APIs even behind a complex user interface, authentication,
or payment process by simply recording user interactions (e.g.,
keyboard typing, mouse clicking).
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Example. Figure 8 shows a simplified code snippet for profiling the
Starbucks PWA through Puppeteer [38]. It creates a web browser
instance, then loads the initial page of the Starbucks PWA (Line
9). Line 12 and 13 indicate that it clicks on a text link with a se-
lector whose ancestors are flex and globalNav in the DOM (i.e.,
.flex > .globalNav > .textLink). Line 17–19 represent a behav-
ior of typing a number, 30332, after clicking a form element with
.header > .controls > .form as its selector. Line 21 closes the
browser instance. Note that the await operator from Promise [84]
ensures that all instructions run synchronously, explicitly waiting
for a DOM node corresponding to a given selector before further
actions (e.g., clicking or typing). In particular, the waitForSelector
method aids in avoiding a race condition problem between input
event processing and DOM operation, which event-driven unit-
test-based profiling suffers from otherwise. With the Starbucks
PWA, DeView can catch 591 web APIs used for rendering in a
PWA startup (53% of the full web APIs we get from thorough man-
ual tests) and examine multiple aspects of the application at once
with a single click or test input. Note that DeView can obtain ex-
ercised web APIs with pre-recorded behaviors flawlessly with a
minimum effort—that is, DeView solely consumes the amount of
CPU andmemory resources as much as having a single web browser
instance.

4.5 On-Demand Debloating

DeView debloats browser engine libraries for each PWA when it is
newly installed or updated with a revised list of required web APIs.
This on-demand debloating relies on 1 the boundary information
(i.e., location and size) of each web API’s entry function in the li-
braries received from the browser vendor (§4.3), 2 a list of required
web APIs received from the PWA developer (§4.4), and 3 modi-
fied Service Worker to intercept installation events [7]. DeView
removes the entry functions of unnecessary web APIs from the
browser engine libraries by replacing the corresponding low-level
machine code with a software interrupt instruction [120]. Instead of
this strict protection with an immediate crash, DeView can adopt a
gentle fallback approach (§7). Finally, DeView maintains slimmed
browser engine libraries for each PWA and loads them when it
launches the PWA (e.g., via LD_PRELOAD).

5 IMPLEMENTATION

We implement DeView on top of the Chromium version of
80.0.3987.0 (r722234) built with LLVM/Clang 10.0.0 (pre-release
version), running on Fedora 32 (kernel version 5.8.10). Table 4
shows Chromium compilation options that affect the number of
web APIs. Note that proprietary_codecs and ffmpeg_branding are
enabled by default for playing a protected media (e.g., DRM). For
record-and-replay web API profiling, we used Puppeteer v2.1.1
and Headless Recorder v0.8.0.
JavaScript Execution with Puppeteer. We employ Puppeteer
for automatic browser control and sequential JavaScript execution,
simplifying our record-and-replay web API profiling for DeView.
We added 705 lines of Python, 1, 066 lines of C++, and 142 lines of
JavaScript code to Puppeteer.
WebIDL and Web API Entry Functions. A majority of modern
web browsers have a bridge or binding layer between front script

engines (i.e., HTML, CSS, and JavaScript) and underlying native
(C++) implementations to enable web APIs to interact with corre-
sponding native functions. Browser vendors use WebIDL to specify
such interfaces, write them in WebIDL files and run a WebIDL parser
against the files to automatically generate bridge functions that
follow consistent naming rules. We investigate the naming rules
of Chromium’s WebIDL parser (i.e., Blink IDL) to obtain a compre-
hensive list of all web API entry functions. Table 1 shows the rules
that we employ to seek the entry point of a target web API native
function. For example, we can enumerate entry points of all HTML
web APIs by searching native functions whose names end with
Constructor in html_element_factory.cc.
LLVM Passes. We develop two LLVM passes for web API marking
and dynamic profiling. The web API marking pass identifies the
boundary information (location and size) of all web API entry func-
tions. The dynamic profiling pass identifies requested web APIs
during a PWA’s execution. This pass maintains a bit array in a
shared memory where each bit represents whether a corresponding
web API has been requested.
Browser Library Debloating. For each PWA, the debloating
process generates debloated versions of Chromium’s two libraries
containing all entry functions of native web API implementations:
libblink_core.so and libblink_modules.so. The process relies on
the boundary information and a set of required web APIs collected
via dynamic profiling, which PWA developers provide. We modified
Service Worker to debloat the libraries only when a PWA is in-
stalled or updated. (i.e., the OnStoreRegistrationCompletemethod
in the ServiceWorkerRegisterJob class selectively forks the de-
bloating process.) As a final step, our specialized Chromium loads
debloated libraries when launched via the LD_PRELOAD environment
variable.

6 EVALUATION

We set up the following four research questions to evaluateDeView.
• RQ1. How many web APIs can DeView remove in a debloating
browser engine (§6.2)?

• RQ2. How effectively does DeView prevent possible attacks
(§6.3) with a case study (§A.2)?

• RQ3. How much code coverage can DeView achieve in finding
exercised web APIs (§6.4)?

• RQ4.What are the performance overheads of DeView (§6.5)?

Experimental Environment. We evaluate DeView on the Linux
machine (kernel v5.8.13) equipped with Intel Core i7-8565U CPU (4
cores, 1.80 GHz) and 16 GB of memory.

6.1 Dataset

PWAs. We gather real-world PWAs from the Alexa Top 100 US
sites [5] and other online resources [6, 52, 95] due to the absence of
a central repository for PWAs. We installed them with our modified
Chromium that can log web APIs usage (§4.4). Note that we ex-
cluded non-installable or malfunctioning PWAs, which mostly arise
from proprietary software for copyright protection or codec [15].
In total, we have 114 PWAs. To identify necessary web APIs for
each PWA, we navigate all available user interfaces of PWAs (e.g.,
click buttons, fill out input fields, and scroll up and down pages)
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Web API Type Target Files Class Naming Rules Target Function Naming Rules

HTML html_element_factory.cc [.*]Constructor

mathml_element_factory.cc

svg_element_factory.cc

CSS shorthands.cc [.*][ApplyInherit | ApplyInitial | ApplyValue | CSSValueFromComputedStyleInternal |

shorthands_custom.cc GetJSPropertyName | InitialValue | ColorIncludingFallback | ParseSingleValue |

longhands.cc ParseShorthand | ConsumeAnimationValue | ConsumeFont | ConsumeImplicitAutoFlow |

longhands_custom.cc ConsumeSystemFont | ConsumeTransitionValue]

JavaScript v8_[.*] ![.*]v8_internal [.*][MethodCallback | AttributeGetterCallback | AttributeSetterCallback |

ConstructorCallback]

Table 1: LLVM pass rules to identify web API entry functions based on their names.

Figure 9: CDF of removable web APIs ratio in our dataset. On

average, 91.8% of web APIs are removable.

to trigger as many web APIs as possible. This approach is similar
to Snyder et al.’s feature detection [108]. In addition to it, we use
gremlins.js [73] to automatically detect any web APIs we might
miss. Detailed statistics can be found in §3.1.
CVEs. We collect real-world web exploits which rely on web APIs
so that DeView might be able to mitigate them. First, we collect
1,035 CVEs from Chrome release notes [21] over the last five years.
Second, we visit each CVE’s bug ticket in crbug.com, the official
bug tracking system for Chromium, to find CVEs associated with
any web APIs that our PWAs use. Among them, we find 478 CVEs
relevant to web APIs. Some of them are initiated with web APIs,
and some others trigger final actions with web APIs. Note that we
exclude CVEs whose information has yet been revealed. Finally, we
classify them into 11 types based on bug description and proof-of-
concept: bypass, information disclosure (Disclosure), memory cor-
ruption, out-of-bound read (OOB Read), out-of-bound write (OOB
Write), overflow, privilege escalation (Priv. Esc.), remote code exe-
cution (RCE), spoofing, use after free (UaF), and cross-site scripting
(XSS). Interested readers refer to Table 6 in Appendix (§A.4). Note
that we discard CVEs that are irrelevant to web API exploits as de-
scribed in our threat model (§3.3). For instance, CVE-2019-5777 is a
URL spoofing attack that attempts to mislead users to www.o2.co.uk
with a Unicode U+0B20 that confuses one with the letter ‘O’. Such
a spoofing attack does not entail any web API, which is out of
DeView’s scope.

6.2 Removable Web APIs

We assess DeView’s effectiveness in removing web APIs with the
114 PWAs. We count the number of web APIs that can be elimi-
nated from the browser engine for each PWA by subtracting an
exercised web API list per PWA from the entire web API list in our
Chromium.

Figure 10: CDF of the ratio for CVEs preventable by DeView.

It can prevent 76.3% of 478 CVEs on average (Table 5).

Results. Figure 9 illustrates the result where the x-axis repre-
sents the ratio of removed web APIs, and the y-axis represents the
cumulative fraction of the 114 PWAs. DeView eliminates 91.84%
of web APIs (i.e., a combination of HTML, CSS, and JavaScript
APIs) on average, ranging from 75.54% to 98.53%. As a break-
down result,DeView successfully shrinks 79.95% of HTML (47.39%–
94.31%), 68.41% of CSS (8.47%–91.86%), and 94.03% of JavaScript
APIs (81.12%–91.62%) on average, respectively. We display the re-
sults for the whole PWAs in Table 5.

6.3 Security Benefits

We evaluate the security benefits of DeView by estimating how
many CVEs can be mitigated by removing unnecessary web APIs.
Figure 10 shows the ratio of preventable CVEs for 114 PWAs.
DeView blocked 76.33% of web API-relevant exploits on average,
ranging from 48.33% to 93.31% (See Table 5 in §A.3). While most
CVEs are JavaScript exploits (i.e., 420 of relevant CVEs), we also
observe non-JavaScript attacks that exploit the static web APIs
(HTML: 48 CVEs, CSS: 10 CVEs). The effectiveness of DeView
slightly differs across attack types: DeView is effective against
bypass and XSS, whereas less effective in defeating RCE or other
memory-related attacks. That is because RCE and memory attacks
mostly exploit non-web API methods, such as JavaScript language
natures (e.g., TypedArray, RegExp, wasm) or browser infrastructure
(e.g., extensions, PDF, protocol handler).

6.4 Code Coverage

In this section, we discuss the effectiveness of DeView’s Web API
profiling in terms of code coverage. We choose three popular PWAs:
Starbucks, Telegram [112], and XSound [57] from eCommerce, so-
cial media, and productivity categories, respectively. With the De-
vTools coverage [11], we compare the code coverage of DeView
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Code coverage

JavaScript CSS #web APIs

PWAs Used/Found (MB) % #Files Used/Found (kB) % #Files JavaScript CSS HTML

DeView

Starbucks 2.60/4.19 62.18 59 36.7/166.4 22.08 9 764.33 154 57
Telegram 1.02/2.63 38.67 1 66.3/237.3 27.96 2 383 149 43
Xsound 0.28/0.51 55.42 5 24.0/27.5 87.06 3 502.33 145.33 47
gremlins.js

Starbucks 1.52/3.14 48.63 33 17.4/143.1 12.17 6.33 660 148 43.33
Telegram 0.99/2.63 37.73 1 55.6/237.3 23.45 2 382.33 143 40
Xsound 0.28/0.51 55.01 5 21.1/27.5 76.52 3 456.67 145.67 46
DeView + gremlins.js

Starbucks 2.60/4.19 62.32 59 36.9/165.1 22.38 9 768 156 58
Telegram 1.03/2.63 39.25 1 74.3/237.3 31.30 2 441 149 51
Xsound 0.29/0.51 56.62 5 24.0/27.5 87.06 3 515 147 47

Table 2: Comparisons of DeView and gremlins.js on code coverage and the number of discovered web APIs for three popular

PWAs. Each experiment was conducted for four minutes and repeated three times. DeView surpasses gremlins.js in both code

coverage and web API discovery. Combining DeView and gremlins.js promotes both code coverage and web API profiling.

for the three PWAs with that of gremlins.js [73], the well-known
monkey test framework for a web application. We recorded each
PWA with ordinary activities and replayed the recorded ones (i.e.,
encoded instructions) with our instrumented Chromium (§4.3). For
monkey testing, we injected the local gremlins.js script into each
PWA to circumvent their CSPs, followed by starting a monkey test
in the same instrumented Chromium with Puppeteer APIs (e.g.,
page.addScriptTag and page.evaluate). We monitor each PWA
once its main page has been loaded. In the case of Telegram, we had
to sign in to collect sufficient code for testing. Note that each ex-
periment was performed for 240 seconds and repeated three times.
It is worth noting that achieving full code coverage on PWAs is
often infeasible in profiling web APIs because 1 a certain code
block may be redundant for compatibility across a different brows-
ing environment (i.e., Polyfill), 2 an exception handling would
be unreachable until encountering an error, and 3 a third-party
library (e.g., jQuery) can be inevitably imported.
Results. Table 2 shows thatDeView outperforms the gremlins.js-
based monkey test in both code coverage and web API profiling,
and the code coverage and the web API profiling efficacy could be
maximized when we combine DeView and the monkey test. For ex-
ample, in the case of Starbucks PWA, DeView examined 62.18% of
JavaScript code and 22.08% of CSS code from 59 JavaScript and 9 CSS
files. In contrast, gremlins.js only covered 48.63% of JavaScript
code and 12.17% of CSS code from 33 JavaScript and 6 CSS files.
Telegram’s code coverage was lower than those of the two other
PWAs because it consisted of a single, sophisticated JavaScript file
supporting various browsers and platforms. Many of its JavaScript
functions were selectively executed according to the underlying
environments. The code coverage of CSS was lower than that of
JavaScript in general because similar to the case of Telegram, PWAs
usually had bloated CSS files supporting various browsers and
platforms. Furthermore, DeView found more JavaScript, CSS, and
HTMLweb APIs than those found by gremlins.js (15.8%, 4.1%, and
31.5% more, respectively, in the case of Starbucks). DeView was
better than the monkey testing because its record-and-replay-based
profiling is guided. Since a developer can accurately program the

features to be tested on specific pages with correct input values,
DeView can maximize the test coverage without suffering from
pitfalls that the monkey test encounters. For example, we observed
that the monkey test frequently got stuck on a certain page re-
quiring valid input for proceeding (e.g., login forms). Moreover, it
frequently revisited a page profiled before and often deviated from
the scope of the profiling target by accidentally clicking out-links
and never coming back on track. Despite these shortcomings, we
can consider the monkey test as a supplementary method to cap-
ture web APIs that DeViewmight miss. As shown in Table 2, when
we applied gremlins.js after DeView, the code coverage and the
number of found web APIs improved for Telegram and XSound,
which are single-page applications. Thus, we conclude that using
both approaches together effectively finds required web APIs.

6.5 Performance Overheads

Starbucks Telegram XSound

CPU (%) 29.02 13.54 27.59
Memory (MB) 390.49 245.68 465.78

Table 3: Performance overheads for profiling web APIs with

three PWAs.

Developer-Side Overheads. For web API profiling, DeView
records a PWA’s execution with Headless recorder [17] and re-
plays the recorded instructions with Puppeteer [38] on top of our
instrumented browser. We confirmed that both Headless recorder
and Puppeteer incurred negligible CPU and memory overheads.
Table 3 shows the CPU and memory requirements (in the exper-
imental environment) for running three different PWAs, which
may vary depending on the characteristics of PWAs. Note that
the memory overheads come from the sum of private memory
footprints [18] by leveraging the Chromium’s task manager and
chrome://tracing [24], considering all sub-processes (e.g., renderer,
browser, GPU, network, and audio).
User-Side Overheads. The overheads from an end-user arise
from debloating browser engine libraries (i.e., copying the vanilla

888



DeView: Confining Progressive Web Applications by Debloating Web APIs ACSAC ’22, December 5–9, 2022, Austin, TX, USA

libraries and removing unnecessary web API entry functions). The
experiment of 10-times debloating for each PWA took 0.24 seconds
on average (max = 0.29 seconds). The size of the whole debloated
libraries pertaining to web APIs per PWA is approximately 68MB.

7 DISCUSSION

In this section, we discuss a few limitations of DeView along with
future work.
Generality. DeView debloats web APIs by leveraging compiler-
assisted annotations on each entry function of a web API that has
been collected from replaying user behaviors. Hence, in general,
DeView ’s approach would be applicable to other modern browsers
(i.e., WebKit, Gecko, and Chromium variants) because they also follow
the WebIDL protocol [74] in binding web APIs to low-level imple-
mentations (§2) and support the WebDriver interface [110] for the
platform- and language-neutral automated testing.
Representativeness of PWAs. Due to the absence of a central
repository for PWAs, we collect varying PWAs (from different cate-
gories, including travel and game) of our choice. As our dataset does
not fully represent all PWAs, removable web APIs and preventable
CVEs may vary accordingly. For better representativeness of PWAs,
it is possible to crawl them from the Alexa Top websites by lis-
tening to a beforeinstallprompt event [39, 86] that informs the
availability of a PWA. However, the beforeinstallprompt event is
an experimental feature, which leaves it as future work.
Breakage Cost. DeView disables web APIs by overwriting their
entry functions with software interrupt instructions (i.e., INT in
the x86 architecture) to suspend potential exploitation immediately.
This strict policy potentially results in a bad user experience if
unexpected crashes occur due to updated third-party libraries or
dynamically-loaded advertisements. To alleviate such unwanted
experiences, DeView provides a configurable fallback mechanism.
For example, instead of using software interrupt instructions at
debloated web API call sites, DeView can return a legitimate error
code to a caller, display a warning message in detail, or simply
ignore an exception depending on the policy from which a user
chooses. In addition, if a PWA needs to access a debloated web API
for a critical but unanticipated operation (e.g., browser extensions),
a user still has a choice from either loading the PWA with vanilla
libraries for compatibility or disabling a problematic function for
security. This is similar to Firefox’s Troubleshoot Mode [29], which
reloads a troublesome webpage in a pristine state without exten-
sions, caches, and cookies.
Non-Web API Attacks. DeView does not cover web exploits
against built-in JavaScript objects, properties, and methods [83]
that do not rely on web APIs (e.g., Date, Math, RegExp). A potential
countermeasure for them would be to eliminate the corresponding
implementation from the JavaScript engine. However, it is non-
trivial because removing a primitive type of JavaScript language
affects other internal implementations. We leave this to future work.
Needed Web API Attacks. DeView cannot cover the case where
an exploit compromises a PWAonlywith requiredweb APIs. Never-
theless, as shown in §3.1, 90% of PWAs use at most 15% of web APIs.
Thus, the remaining web APIs that a compromised PWA can use
are fairly limited.

Limited Code Coverage. Exercising every code path of a
web application is very challenging due to third-party libraries
(e.g., jQuery), exception handling routines, and compatibility (e.g.,
polyfill) issues, and so is DeView. Since web API profiling relies
on dynamic analysis, it may suffer from limited code coverage due
to an incomplete set of test cases, potentially missing some required
web APIs. Producing a complete and sound test case is yet another
research topic [103], which is beyond this paper’s scope. Still, our
experiment shows that a semi-automated approach has been suf-
ficient to instrument a debloating version that works seamlessly.
Although a fuzzing technique helps to increase overall coverage, it
is susceptible to exploring a context-sensitive feature like a sign-in.
Utilizing both static and dynamic analysis for better coverage is part
of our future research. Also, to overcome this limitation, DeView
can leverage client-side error logs to further collect unidentified
web APIs, followed by updating debloated browser libraries accord-
ingly.
Storage Overheads. As DeView generates a debloated library
version per PWA, it consumes additional storage proportionally to
the number of installations. However, this storage overhead is still
smaller than those of Electron apps (~120MB) that must contain the
entire copy of Chromium [64, 90]. DeView can reduce this storage
requirement by adopting memory de-duplication or masking out
unneeded web APIs in a library at load time, which remains part
of our future research.

8 RELATEDWORK

Reducing attack surfaces and diversifying shared libraries are classic
problems in system security that have been the subject of extensive
previous work. We will discuss them in groups of different targets.
Operating System Debloating. An operating system contains
a large spectrum of modules providing functionalities through-
out the system stack, including the kernel, system calls, system
libraries, etc. Gu et al. [48] propose FACE-CHANGE dynamically
customizing kernel code at the basic block level when the running
application is changed; thus, each application accesses the required
minimized kernel code at runtime. Similarly, Zhi et al. [128] leverage
hardware-assisted virtualization to enable or disable the executable
permission for required or unneeded code pages for different run-
ning applications. Both Kurmus et al. [68] and Kuo et al. [67] profile
a workload to obtain used kernel configurations and statically tailor
the kernel by only enabling the required configurations at compile
time. In addition to directly shrinking kernel code size, DeMarinis
et al. [37] and Ghavamnia et al. [44, 45] limit an application’s access
to system calls. Some systems have also been designed to create
minimal containers to provide limited operating system resources
(e.g., CPU, memory) to target applications [50, 54, 100]. Compared
with these systems, DeView reduces web APIs as attack surfaces
from web browsers on which PWAs are frequently updated.
Library Debloating. Although a library wraps up a bundle of func-
tions providing fruitful features, most applications just use a subset
of them. This results in the library being bloated. CodeFreeze [88]
conservatively analyzes a binary and eliminates functions imported
but never used by the binary from libraries at load time. Piece-
Wise [99] recompiles a library to figure out call dependencies and
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function boundaries and save them into the final binary as sup-
plementary information for future debloating. It also modifies the
loader to invalidate library code unnecessary for target applica-
tions. Nibber [2] disassembles libraries that an application requires,
constructs function call graphs in order to identify unreachable
code for the application, and then nullifies dead code by directly
rewriting the libraries. Even though DeView also debloats shared
libraries of a web browser, it is more flexible and scalable than
the aforementioned work. This is because DeView regenerates a
newly debloated copy of browser libraries whenever the target PWA
is either updated or installed, rather than freezing the debloated
libraries forever after doing static analysis once.
Web Browser Debloating. A web browser consists of large and
complex source code to provide users a complete set of tools nec-
essary to explore the world wide web and satisfy web developers’
various demands with rich web features. Previous work related to
web browser debloating systems is the closest to our work. Snyder
et al. [108] evaluate the costs and benefits of allowing a website
to use each web feature, then restrict the website from access-
ing risky features by utilizing JavaScript Proxy objects in their
browser extension. However, this approach is not only vulnerable
to static web API (i.e., HTML tags and CSS properties) based at-
tacks [4, 23, 111] but also easy to bypass because Web APIs’ entry
points and actual implementation still reside in computer mem-
ory [60]. Moreover, this approach cannot be applied to PWAs since
even unpopular Web APIs can play a pivotal role for a specific
PWA, as shown in Figure 4. Slimium [97] is the first work that
succeeds in debloating browser-scale complex software. It removes
unnecessary functions for a landing page at the feature granular-
ity from a Chromium binary based on a predefined feature-code
map (with a semi-automatic analysis), instrumenting a slim ver-
sion of Chromium per website. DeView has different motivations
and objectives. It pursues a general way to confine accessible web
APIs per PWA and seeks incorporated Web APIs in a PWA with
user interactions. In addition, a study by Lee et al. [69] shows
that unique features of PWAs, such as Push Notification, Cache,
Service Worker can be weaponized by attackers. This indicates
that PWAs can be exposed to additional security threats that tradi-
tional websites and web applications never suffer. DeView is the
first web browser debloating system with a focus on PWAs.
Application Debloating. Researchers have proposed numer-
ous systems for debloating applications. DamGate [19] proposes a
framework using both static and dynamic analysis to build a call
graph based on the allowed features at runtime it customizes. Mean-
while, Shredder [77] performs argument-level debloating against
well-known APIs with the initial analysis of benign API parameters,
followed by establishing a policy to narrow the scope of parameters.
In a similar vein, Saffire [78] expands Shredder to create a hardened
replica of a function with a restricted call invocation. Razor [96]
comes up with four heuristic techniques to deduce more code paths
that have not been exercised with given test cases but possibly
needed for the desired functionality. Koo et al. [66] debloat partial
code of an application relying on specific runtime configurations.
Babak et al. [8] propose an approach using two levels: file-level and
function-level to debloat PHP applications by identifying required
code during interactions between a client and a server. Machine

learning (e.g., deep learning and reinforcement learning) based
debloating techniques also have been introduced. Hecate [125]
makes use of both Recursive Neural Network (RNN) to obtain code
embedding and Convolutional Neural Network (CNN) to identify
feature-constituent functions for further debloating. Binary control
flow trimming [43] proposes a contextual control flow graph (CCFG)
that filters out unneeded features with a combination of runtime
tracing, reference monitoring, and machine learning. CHISEL [51]
leverages reinforcement learning to generate a debloating variant
after unneeded feature elimination.
Software Diversification and Obfuscation. DeView employs
a software hardening technique to raise the bar for attackers
to seek and exploit security vulnerabilities in PWAs. Previous
researchers tried to impede malicious reverse engineering at-
tempts with various software obfuscation techniques at the code
level [9, 10, 13, 20, 34, 55, 76, 79, 98, 105, 124] and hamper hos-
tile problem analysis that purposes security flaws located in the
program [42, 71, 72, 80, 91, 104, 126]. Moreover, pioneering re-
searchers proposed multiple variant systems to prevent a successful
exploit that leverages common vulnerabilities from being wide-
spread across similar environments [35, 53]. These lines of work
share the same purposes with DeView, increasing the level of diffi-
culty for adversaries to understand a target program and craft an
exploit that works for all other similar programs. However,DeView
is distinct in terms of what to transform and how to transform.
DeView varies web API support per PWA in the same browser bi-
naries and diversifies browser libraries by eliminating unwanted
web APIs rather than inserting or modifying a small piece of code
in the libraries.

9 CONCLUSION

Securing PWAs is important as they have become widely used by
many application developers for various target platforms. We pro-
pose DeView, which can practically confine a PWA by eliminating
unnecessary web APIs from a corresponding browser instance. To
this end, DeView adopts record-and-replay web API profiling and
compiler-assisted on-demand browser instrumentation. Our exper-
iments show that DeView eliminates 91.8% of the whole web APIs
per application on average, ranging from 75.5% to 98.5% with real-
world PWAs. Also, DeView can prevent 76.3% of CVEs (out of
478) relevant to web API exploits on average. We demonstrate the
practicality of DeView with reasonable performance overheads.
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A APPENDIX

A.1 Chromium Build Configuration

Configuration Value Configuration Value

is_component_build true symbol_level 0
is_chrome_branded true blink_symbol_level 0
is_debug false ffmpeg_branding “Chrome”
enable_nacl false clang_base_path /* Path to
properietary_codecs true Clang */

Table 4: Chromium build configuration for DeView. The

number of available web APIs may vary according to it.

A.2 Case Study: Starbucks PWA

In this section, we demonstrate the robustness and effectiveness
of DeView with a real-world PWA, e.g., the commercial Starbucks
PWA [33]. Note that we created a few test accounts to collect exer-
cised web APIs after a sign-in. We begin with a profiling process
on a local workstation using our instrumented Chromium. Unlike
our assumption of a deployment model, we cannot directly de-
ploy a required web API list along with Web App Manifest for the
Starbucks PWA because we do not own its web server. Instead,
we install the Starbucks PWA from an application server, record
user activities (e.g., browsing), and then place them in the mani-
fest directory. Next, we forcefully trigger a service worker update
event via Chromium’s DevTool and run our profiling tool to export
the exercised web API list with replaying, followed by generating
the debloated browser engine libraries. Note that all processes can
be automatically completed except recording user behaviors. We
confirm that the debloated version of the browser engine works
flawlessly, successfully blocking four known proof-of-concept ex-
ploits, including XSS, URL spoofing, and two CSS attacks.
Protection against CVEs. We choose four proof-of-concept ex-
ploits to showcase the effectiveness of our approach: 1 XSS, 2 URL
spoofing, and 3 two CSS-based attacks: fingerprinting and input
field eavesdropping. First, CVE-2018-6145 describes an XSS attack

via MathML when Chromium’s HTML parser does not appropriately
handle a specially crafted string starting with a <math> tag. It un-
intentionally lets an adversary inject an arbitrary script. We ran a
Chromium browser with and without the debloated browser engine
libraries by loading a page containing the exploit separately. Since
the Starbucks PWA needed neither Math nor XML tags, DeView
disabled the corresponding web APIs in the debloated browser
engine for it. We confirmed that our approach successfully pro-
tected the PWA from the exploit. Second, CVE-2020-6431 can be
leveraged in a URL spoofing attack that utilizes the fullscreen API
(e.g., requestFullScreen and webkitRequestFullscreen). That is,
attackers can display a fake website in fullscreen to lure users.
Since the Starbucks PWA did not need the fullscreen API, the de-
bloated browser engine also did not have the API, so the attack
was unsuccessful. Third, CSS can be weaponized to exfiltrate sen-
sitive information [111]. We examined the debloated browser en-
gine with the crooked style sheets demo [16] and the CSS exfil at-
tack [49]. The common idea of both CSS attacks is to conditionally
load an external resource through a URL by abusing CSS selectors
(e.g., HTML attribute selector, media query) and properties (e.g.,
background, background-image, cursor). Based on a request, an at-
tacker can identify the victim or leak sensitive information. Since
the two attacks rely on background or content that the Starbucks
PWA does not require, they failed in the debloated browser en-
gine. The attacker might circumvent our defense by replacing the
removed CSS properties with the remaining alternatives, such as
background-image or cursor. However, we emphasize thatDeView
still helps mitigate the implication of an exploit because it prevents
the attacker from crafting a universal attack that works for every
PWA by diversifying the browser engine (i.e., debloated variants).
This case study demonstrates that DeView can effectively protect
a real-world PWA from existing exploits or at least significantly
raise the bar for attackers by constraining web APIs available.
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A.3 Removable Web APIs for Real-World PWAs

PWA Name

Web APIs

(8249)

Removed

HTML

(211)

Removed

CSS

(590)

Removed

JS Object

(837)

Removed

JS API

(7448)

Prevented

CVEs

(478)

PWA Name

Web APIs

(8249)

Removed

HTML

(211)

Removed

CSS

(590)

Removed

JS Object

(837)

Removed

JS API

(7448)

Prevented

CVEs

(478)

AlarmDJ 1,219 78.20% 9.32% 86.74% 91.43% 338 Minesweeper 338 89.57% 78.98% 94.86% 97.42% 405
Alibaba 1,280 66.35% 71.02% 81.12% 86.06% 268 MoneyTracker 500 84.36% 75.59% 92.23% 95.66% 395
Aliexpress 1,068 64.93% 71.53% 83.27% 88.91% 290 MTGStocks 794 70.14% 72.71% 89.01% 92.35% 354
AMP 1,009 66.35% 41.36% 86.26% 92.05% 338 MultiCalc 536 82.46% 74.41% 92.11% 95.33% 388
Anonynote 828 78.20% 73.22% 86.98% 91.62% 346 MusicKit 350 89.57% 75.25% 94.50% 97.56% 419
ArrowsRain 126 93.84% 89.83% 97.97% 99.29% 441 Notepad 392 82.94% 77.97% 94.86% 96.97% 405
Avain 209 91.47% 84.58% 96.54% 98.66% 415 Pencil 613 79.15% 75.76% 90.68% 94.28% 361
BentoStarter 671 77.25% 71.86% 89.84% 93.86% 322 Pinterest 849 76.30% 72.37% 86.74% 91.46% 320
BestMarkdown-
Editor 495 84.83% 77.97% 91.52% 95.53% 366 Pokedex 327 88.15% 77.12% 94.03% 97.76% 411

Booksie 607 79.15% 73.90% 89.96% 94.51% 358 PokeQuestWiki 523 79.15% 74.75% 91.88% 95.57% 384
BreakLock 220 86.73% 78.81% 97.49% 99.10% 440 PregBuddy 457 85.78% 78.81% 93.07% 95.95% 348
BubblePairs 302 87.20% 82.88% 95.94% 97.66% 414 ProgressiveBeer 540 80.57% 73.73% 90.32% 95.38% 393

BudgetTracker 1,031 78.67% 9.49% 89.25% 93.93% 319 PWAReact-
Calculator 539 79.62% 76.44% 91.28% 95.21% 381

CareCards 676 71.56% 69.49% 89.73% 94.15% 357 PWAReact-
MusicPlayer 648 70.14% 72.71% 90.20% 94.31% 331

ChromeDeveloper-
Summit 1,410 61.14% 9.32% 84.35% 89.35% 326 QRCodeGenerator 431 88.63% 78.31% 92.83% 96.25% 404

chromestatus 1,472 66.82% 9.32% 81.60% 88.36% 312 QRCodeScanner 517 80.57% 75.59% 91.52% 95.54% 363
Closerintime 1,015 85.31% 9.49% 90.68% 93.96% 379 QRSnapper 256 91.00% 82.03% 96.06% 98.24% 413
Colosseum 778 87.68% 9.66% 93.79% 97.06% 392 ReactWeather 309 90.05% 81.53% 95.34% 97.60% 423
CurrencyConverter 846 61.14% 69.49% 88.05% 92.16% 336 Regretris 178 94.31% 91.86% 96.18% 98.42% 424
CurrencyExchange-
LossCalculator 521 78.20% 75.76% 92.47% 95.54% 387 Remember 279 91.94% 78.81% 96.30% 98.16% 420

Datememe 950 66.35% 70.85% 84.47% 90.51% 302 RenzysYahtzee 319 87.20% 82.88% 94.74% 97.44% 408
DeadOrAlive 316 91.00% 83.05% 94.86% 97.35% 413 ResumeNation 1,037 75.36% 9.49% 90.56% 93.94% 362
DevOpera 619 71.09% 72.37% 91.04% 94.70% 365 SaintsSchedule 194 92.42% 91.86% 96.30% 98.25% 413
Dice 164 92.89% 85.25% 97.37% 99.17% 446 SantaTracker 949 80.57% 71.19% 84.95% 90.09% 340
Dino 207 93.84% 87.12% 96.06% 98.42% 435 SimilarWorlds 1,048 74.88% 71.69% 83.75% 88.88% 315

DoodleCricket 592 82.46% 73.90% 90.56% 94.62% 343 SimpleCurrency-
Converter 412 92.89% 78.14% 92.59% 96.40% 405

ELFSH 328 83.41% 80.00% 95.46% 97.65% 411 Skcript 1,228 72.04% 9.49% 86.98% 91.47% 337
Emberclear 510 75.83% 73.56% 92.23% 95.93% 395 SmallerPictures 435 86.73% 77.97% 92.83% 96.28% 376
Emojityper 358 87.20% 81.02% 94.03% 97.06% 403 Snake 229 93.36% 91.86% 94.98% 97.76% 418
Encounters 684 74.41% 76.10% 89.37% 93.43% 360 Snapdrop 318 89.57% 78.81% 94.74% 97.70% 385
Etch 415 76.78% 77.29% 94.50% 96.89% 410 Soundslice 1,017 71.09% 67.46% 83.75% 89.74% 294
FinancialTimes 1,355 53.55% 66.10% 80.05% 85.81% 281 SplittyPie 650 77.25% 74.41% 89.25% 93.94% 378
FirefoxPlatformStatus 647 58.77% 68.98% 91.04% 94.94% 358 Starbucks 1,115 74.41% 70.68% 81.96% 88.08% 295
FlagWarriors 431 84.83% 81.53% 93.79% 96.11% 388 svginger 452 89.57% 81.53% 93.19% 95.69% 389
GitHubExplorer 311 89.10% 79.83% 95.34% 97.73% 410 SVGOMG 540 83.41% 74.07% 90.56% 95.27% 374
GlobalDefense 207 94.31% 85.25% 97.01% 98.55% 423 Telegram 894 71.56% 70.00% 85.07% 91.18% 310
GoogleMap 1,298 61.14% 67.12% 80.76% 86.28% 257 Tetra 251 93.36% 87.63% 95.10% 97.80% 417
GoogleNews 1,999 47.39% 8.47% 74.31% 81.90% 248 TheCircle 450 93.36% 67.63% 93.55% 97.44% 403
GooglePhotos 1,342 61.61% 52.37% 80.88% 86.84% 262 Themer 524 85.78% 73.90% 91.88% 95.44% 357
GrrdsTicTacToe 192 86.73% 82.54% 97.61% 99.18% 426 TheTrendBed 790 79.62% 73.73% 87.22% 92.05% 346
Grubhub 1,266 58.29% 67.63% 80.65% 86.75% 286 TicTacToe 381 91.47% 84.92% 93.43% 96.32% 401
GuitarTuner 314 91.00% 90.00% 93.43% 96.83% 393 Tinder 1,162 73.93% 41.36% 84.59% 89.78% 278
HackerNews 662 72.99% 72.03% 89.96% 94.09% 338 TotalFormatter 509 86.26% 74.75% 92.71% 95.56% 379
iHeartRadio 2,018 63.51% 9.32% 75.27% 81.12% 231 TowerGame 254 92.89% 88.47% 95.34% 97.70% 413
Indecisive 121 92.89% 86.78% 98.57% 99.62% 446 trivago 1,411 59.72% 41.36% 80.88% 86.84% 290
journalistic 470 81.04% 76.44% 92.83% 96.09% 398 Twitter 1,166 67.30% 68.47% 81.72% 87.77% 274
jsfeatures 233 90.05% 84.07% 96.77% 98.42% 426 Uber 1,175 72.99% 66.27% 84.11% 87.66% 311
JSONFormatter 293 91.47% 82.03% 95.58% 97.73% 438 Unsplash 1,239 52.13% 63.90% 81.48% 87.58% 303
Kahla 522 78.67% 75.59% 91.64% 95.53% 393 VaporBoy 612 82.46% 74.41% 89.49% 94.31% 316
KlondikeSolitaire 240 85.31% 78.14% 97.13% 98.93% 430 Versus 1,788 67.30% 9.32% 79.21% 84.10% 269
Letgo 1,436 62.09% 67.97% 77.06% 84.33% 266 Wavemaker 871 73.93% 73.05% 85.54% 91.18% 303
LofiNews 354 89.57% 81.53% 94.38% 97.01% 404 WavePD1 289 89.57% 83.22% 94.62% 97.74% 423
MakeBetterSoftware 614 82.46% 75.42% 90.08% 94.20% 365 WeatherApp 349 94.31% 80.17% 93.79% 97.05% 427

MakeMyTrip 1,014 69.67% 73.73% 83.51% 89.33% 298 WebNFCEnabled-
ShoppingCart 396 86.73% 78.47% 93.55% 96.76% 394

Mandala3D 286 92.42% 86.44% 95.46% 97.45% 416 XSound 607 83.41% 78.64% 89.37% 94.01% 366
MaskableApp 427 66.82% 73.05% 94.03% 97.34% 397 YouTubeMusic 1,436 73.46% 8.47% 83.99% 88.72% 286
MemoryGame 204 92.89% 85.42% 96.89% 98.62% 428 Yummly 1,832 65.88% 9.32% 78.38% 83.55% 234

Table 5: Results of real-world Progressive Web Applications that we have tested in alphabetical order (114 in total). The

empirical results show that DeView can remove 79.75%, 68.25%, 90.24% and 94.04% on average for HTML, CSS, JS Object and JS

API, respectively.
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A.4 Preventable CVEs

Feature Category # CVEs H/C/J Feature Category # CVEs H/C/J Feature Category # CVEs H/C/J

Accessibility UaF 2 0/0/2 Fullscreen Spoof 13 0/0/13 Stream OOB Read 2 0/0/2
Animation Bypass 1 0/0/1 UaF 2 0/0/2 SVG Bypass 2 2/0/0

UaF 2 0/0/2 Graphics Overflow 2 1/0/1 Memory Corruption 1 0/0/1
Autofill Bypass 4 2/1/1 UaF 2 0/0/2 OOB Write 1 1/0/0

Disclosure 8 1/1/6 History Bypass 2 0/0/2 TextDecoder Overflow 1 0/0/1
Overflow 2 2/0/0 Overflow 1 0/0/1 UI Bypass 1 1/0/0
Spoof 3 1/0/2 Spoof 1 0/0/1 Overflow 7 0/0/7
UaF 3 1/0/2 ImageCapture UaF 1 0/0/1 Spoof 8 2/0/6

Blob Bypass 1 0/0/1 IndexedDB Bypass 1 0/0/1 UaF 9 1/0/8
Overflow 1 0/0/1 UaF 3 0/0/3 XSS 1 0/0/1
UaF 1 0/0/1 Internal Bypass 2 0/0/2 URL Spoof 6 0/0/6
XSS 1 0/0/1 Memory Corruption 2 0/0/2 XSS 1 0/0/1

Cache Disclosure 1 0/0/1 OOB Write 1 0/0/1 WebAudio Bypass 3 0/0/3
UaF 2 0/0/2 Overflow 5 0/0/5 Disclosure 1 1/0/0

Canvas2D Bypass 2 0/0/2 UaF 11 1/0/10 Memory Corruption 1 0/0/1
Disclosure 3 0/0/3 JavaScript Memory Corruption 1 0/0/1 OOB Read 3 0/0/3
Memory Corruption 1 0/0/1 UaF 2 0/0/2 OOB Write 1 0/0/1
Overflow 1 0/0/1 Loader Disclosure 2 0/0/2 Overflow 2 0/0/2
UaF 3 0/0/3 RCE 2 1/0/1 UaF 14 0/0/14

Contacts Spoof 1 0/0/1 UaF 3 0/0/3 WebAuthn UaF 1 0/0/1
Cookie Bypass 1 0/0/1 MathML XSS 1 1/0/0 WebCodecs Memory Corruption 1 0/0/1
CSP Bypass 18 2/0/16 Media Bypass 2 0/0/2 WebGL Disclosure 1 0/0/1

Disclosure 2 1/0/1 Disclosure 3 0/0/3 Memory Corruption 2 0/0/2
Overflow 1 0/0/1 Overflow 2 1/0/1 OOB Read 4 0/0/4

CSS Disclosure 3 0/3/0 RCE 1 0/0/1 OOB Write 2 0/0/2
Memory Corruption 1 0/1/0 Spoof 1 0/0/1 Overflow 20 0/0/20
Spoof 1 0/1/0 UaF 8 0/0/8 Privilege Escalation 1 0/0/1
UaF 3 0/2/1 Navigation Bypass 8 1/0/7 UaF 8 0/0/8

DevTools Disclosure 4 0/0/4 Disclosure 1 0/0/1 WebGPU UaF 1 0/0/1
Memory Corruption 1 0/0/1 Overflow 1 0/0/1 WebMIDI UaF 1 0/0/1
Privilege Escalation 1 0/0/1 Privilege Escalation 1 0/0/1 WebOTP Bypass 1 0/0/1
RCE 2 0/0/2 Spoof 15 1/0/14 WebRTC Disclosure 2 0/0/2
UaF 2 0/0/2 XSS 1 0/0/1 Memory Corruption 2 0/0/2
XSS 1 0/0/1 Network Disclosure 2 0/0/2 OOB Read 2 0/0/2

DOM Bypass 3 1/0/2 Memory Corruption 1 0/0/1 OOB Write 1 0/0/1
Disclosure 2 1/0/1 Overflow 1 0/0/1 Overflow 2 0/0/2
Memory Corruption 2 1/0/1 UaF 2 0/0/2 UaF 6 0/0/6
OOB Read 1 0/0/1 Password UaF 3 0/0/3 WebSerial OOB Read 1 0/0/1
Overflow 1 0/0/1 Payment Bypass 1 0/0/1 WebShare Bypass 1 0/0/1
Spoof 1 0/0/1 Disclosure 1 0/0/1 UaF 1 0/0/1
UaF 5 3/0/2 UaF 9 0/0/9 WebSocket Bypass 1 0/0/1
XSS 1 1/0/0 XSS 1 0/0/1 Memory Corruption 1 0/0/1

Download Bypass 6 1/0/5 PDF Overflow 1 0/0/1 WebSpeech Spoof 1 0/0/1
Disclosure 1 1/0/0 UaF 3 2/0/1 UaF 4 0/0/4
Spoof 3 0/0/3 Performance Disclosure 8 0/0/8 WebSQL OOB Read 1 0/0/1
UaF 1 0/0/1 Presentation RCE 1 0/0/1 Overflow 1 0/0/1

Editing XSS 2 1/1/0 UaF 1 0/0/1 UaF 2 0/0/2
Extension Bypass 5 0/0/5 Printing Overflow 1 0/0/1 WebUSB Overflow 1 0/0/1

Disclosure 2 1/0/1 UaF 5 0/0/5 Spoof 2 0/0/2
Memory Corruption 1 0/0/1 ReaderMode UaF 1 0/0/1 UaF 2 0/0/2
Privilege Escalation 3 0/0/3 Sandbox Bypass 16 6/0/10 WebVideo Bypass 1 1/0/0
Spoof 1 0/0/1 Disclosure 2 0/0/2 Overflow 1 0/0/1
UaF 3 0/0/3 Privilege Escalation 1 0/0/1 Spoof 1 1/0/0

Fetch Disclosure 1 0/0/1 Spoof 1 1/0/0 UaF 1 0/0/1
FileSystem Spoof 2 0/0/2 XSS 2 1/0/1 WebXR UaF 2 0/0/2

UaF 2 0/0/2 Sensor UaF 2 0/0/2 Worker Bypass 5 0/0/5
Font Overflow 1 0/0/1 SOP Bypass 1 0/0/1 Disclosure 4 0/0/4

UaF 1 0/0/1 Disclosure 1 0/0/1 UaF 2 0/0/2
Form Privilege Escalation 1 0/0/1 Storage Disclosure 4 0/0/4 XHR Disclosure 1 0/0/1

UaF 1 0/0/1 OOB Read 1 0/0/1
FTP Disclosure 1 0/0/1 UaF 3 0/0/3

Table 6: List of 478 CVEs pertaining to Chromium for the last five years (Jan. 2017 – Apr. 2022). We follow each vulnerability’s

feature and category information from https://bugs.chromium.org (i.e., component, description). H, C, and J represent HTML,

CSS and JavaScript, respectively.
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