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Abstract
Low-volume Denial-of-Service (µDoS) attacks have been
demonstrated to fundamentally bypass traditional DoS mit-
igation schemes based on the flow and volume of network
packets. Their three characteristics—low capacity (volume),
slow speed (velocity) and benign looking (legitimacy), make
it infeasible to tame them by simply observing external net-
work activities, demanding a finer-grained scheme that can
monitor the internal activities. Recent µDoS attacks appear
to be not just stealthy but also destructive so that they often
result in severe consequences to the victim machine: e.g.,
SegmentSmack and FragmentSmack attacks demonstrated
in 2018 can result in a kernel panic or system hang while
requiring virtually no resource from the attacker.

In this paper, we propose a data-driven approach, called
ROKI, that accurately tracks internal resource utilization and
allocation associated with each packet (or session), making it
possible to tame resource exhaustion caused by µDoS attacks.
Since ROKI focuses on capturing the symptom of DoS, it
can effectively mitigate previously unknown µDoS attacks.
To enable a finer-grain resource tracking, ROKI provided in
concept the accounting capabilities to each packet itself, so
we called data-driven: it monitors resource utilization at link,
network, transport layers in the kernel, as well as application
layers, and attributes back to the associated packet. Given the
resource usages of each packet, ROKI can reclaim (or prevent)
the system resources from malicious packets (or attackers)
whenever it encounters system-wide resource exhaustion. To
provide a light-weight resource tracking, ROKI carefully mul-
tiplexes hardware performance counters whenever necessary.
Our evaluation shows that ROKI’s approach is indeed effec-
tive in mitigating real-world µDoS attacks with negligible
performance overheads—incurring 3%–4% throughput and
latency overheads on average when the system is throttled.

1 Introduction

Denial-of-Service (DoS) attacks are ongoing, evolving threats
to the Internet. Basically, they throttle a victim server with
a tremendous number of network packets, so that the server
becomes unresponsive to other benign requests. To maximize
the number of attack packets, they often abuse a large num-
ber of zombie computers [9], also known as distributed DoS

(DDoS) attacks. Existing defenses or mitigation approaches
either rely on a good, reactive infrastructure to handle higher
network capacity, limit the rate of packets to which each client
can respond, or filter out the packets with known bad signa-
tures [6,7,18]. These approaches, however, make DoS attacks
evolve into two other extremes: either maximizing attack
volume to overwhelm the defenses (e.g., the 1.7 Tbps Mem-
cached reflection attack [31]), or minimizing attack volume
to bypass them (e.g., the SegmentSmack [39, 41] and Frag-
mentSmack [40] attacks). This paper focuses on the latter
attack as known as a low-volume DoS attack (µDoS).

µDoS requires low-volume, slow-rate attack traffics, yet
still results in destructive consequences to the victim ma-
chines. Instead of merely flooding a victim’s network, µDoS
attacks send either crafted exploit packets to trigger DoS vul-
nerabilities of target software, or expensive, yet legitimate
requests that can easily exhaust important system resources,
such as CPU cycles, memory or file descriptors. Conventional
DoS defense schemes such as improving network capacity, re-
stricting the packet rates or even blocking known bad requests,
are, unfortunately, less effective against µDoS attacks. For
example, recent µDoS attacks, SegmentSmack [39, 41] and
FragmentSmack [40], rely only on legitimate packets that can
exhaust the CPU cycles of a victim’s servers by stressing the
re-assembling logic that handles out-of-order TCP segments
and incomplete IP fragments. More traditional µDoS attacks,
such as Billion Laugh [30] and Slowloris [8], can cause mem-
ory exhaustion or limit the number of active sessions of the
victim’s server, while relying only on benign-looking requests
that can bypass the existing DoS defense schemes.

Existing countermeasures against µDoS focus only on fix-
ing specific instances of attacks since by definition, all µDoS
attacks are hardly identifiable in terms of network traffics
and legitimacy. It is important to address the root cause of
µDoS attacks, but our communities are desperately looking
for more universal, practical solutions that can mitigate the
emerging µDoS attacks [8, 11]. To be deployable in practice,
it is also important to address the µDoS problems at the end
points (i.e., hosts) without requiring modification of network
infrastructure.

In this paper, we propose ROKI, a data-driven resource ac-
counting system to mitigate µDoS attacks by monitoring how
each packet (or session) accounts to the system resource us-
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ages, and reacting to the packet causing resource exhaustion.
The key idea of ROKI is to focus on identifying the symptom
of µDoS (i.e., resource exhaustion, so DoS), rather than identi-
fying specifics of attacks, such as exploit methods or types of
DoS vulnerabilities. Once ROKI concludes that the systems
are throttled or potentially under a DoS attack, it reacts to the
current situation based on the amount of the system resources
attributed to each packet (or session). As a reaction, ROKI
attempts to reclaim the resources of the most exhaustive pack-
ets (or sessions) in order, and prevent the future attacks by
blacklisting their origins.

To make this data-driven resource accounting possible,
ROKI attempts to accomplish three goals: precision, perfor-
mance and generality. First, ROKI implements a finer-grained
resource accounting scheme. It provides in concept resource
accounting capabilities to each packet (or session); it mon-
itors resource utilization at link, network, transport layers
in the kernel, as well as application layers, and attributes
back to the associated packet. This allows ROKI to reason
about µDoS attacks targeting specific network layers. Second,
ROKI minimizes the performance overheads required for the
fine-grained resource accounting by carefully multiplexing
hardware performance counters (HPCs). Third, ROKI focuses
on identifying the symptom of the DoS attacks and mitigates
them without knowing the details of the attack methods nor
targeted resources for exhaustion. Most importantly, ROKI is
designed to tackle µDoS at the end hosts without requiring
the modification of the network infrastructure.

Our evaluation shows that ROKI can identify real-world
µDoS attacks (e.g., FragmentSmack, Apache Range Header,
and Slowloris) targeting various types of system resources
(e.g., CPU, memory, and connection pool) at different layers
(e.g., network, transport, and application layers). Also, ROKI
can mitigate on-going µDoS attacks by selectively blocking
exhaustive requests. That is, it can continue to serve legitimate
requests by dropping up to 16% of requests even under active
µDoS attacks. It also imposes negotiable performance over-
heads: when the system is throttled and ROKI is applied, it
incurs only 3.5%–4.8% of latency and throughput overheads.

The summarized contributions of this paper are as follows:
• Data-oriented resource-usage profiling. To the best of

our knowledge, ROKI is the first study that detects and
blocks suspicious requests according to their high system
resource usages. ROKI enables data-oriented resource-
usage profiling to accurately identifies how many re-
sources have been used to process each request at each
network layer, detecting suspicious clients regardless of
which unknown exploit techniques they use.

• Hardware-based efficient profiling. ROKI uses HPCs
for efficient profiling of per-packet per-layer resource
usage. More specifically, ROKI uses the performance
monitoring unit (PMU) to check the number of retired
CPU instructions at each layer, and the memory band-
width monitoring (MBM) to check the number of mem-

ory accesses at each layer for processing each packet.
• Universal defense. ROKI is effective against various

µDoS attacks targeting different resources. ROKI moni-
tors various system resources simultaneously using the
same technique to detect and avoid any of their exhaus-
tion.

The remainder of this paper is organized as follows. §2 defines
µDoS attacks and explains previous studies. §3 introduces our
motivation, research goal, and challenges. §4 depicts the de-
tailed design of ROKI. §5 describes how we implemented
ROKI. §6 explains our case studies on µDoS attacks and
evaluates the performance overhead and the effectiveness
of blocking in ROKI. §7 discusses some limitations of ROKI
and potential solutions. §8 introduces related work and §9
concludes this paper.

2 Background

We define a µDoS attack and characterize their properties by
using real-world µDoS attacks as examples. We also explain
existing approaches and their limitations, highlighting the
motivation of ROKI’s approach.

2.1 Low-volume DoS (µDoS) Attack

µDoS attacks aim to make victim servers unavailable with a
small number of attack packets. They often rely on carefully
crafted, benign looking packets to effectively exhaust the im-
portant system resources of victim servers, by exploiting their
performance bugs or heavy operations. For example, the event
handler poisoning attack [12, 55] overloads a single-threaded
event-driven server (e.g., Node.js) by requesting expensive
computations such as evaluating complicated regular expres-
sions. Second, to exhaust both memory and CPU of a victim
server, some attacks exploit its performance bugs. The Black-
Nurse attack [57] exploits a vulnerability of a Linux-based
firewall that consumes many CPU cycles and much memory
to process “Destination Unreachable/Protocol Unreachable”
messages of the ICMP protocol.

Existing countermeasures against µDoS attacks tend to be
attack-specific, as discussed in [4]. For example, to mitigate
the SSL/TLS Renegotiation attack, it is recommended to dis-
able the SSL/TLS Renegotiation protocol [45]. Similarly, to
address the event handler poisoning attack described above,
typical countermeasures are to estimate the complexity of
each regular expression. Not surprisingly, it is recommended
to restrict the number of active sessions a client can initiate in
order to mitigate the session-pool µDoS attacks [8,12,55]. We
believe countering µDoS attacks by exploiting attack-specific
characteristics falls short in mitigating unforeseen, constant
threats of µDoS attacks.
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2.2 Defenses Based on Resource Profiling
Two recent countermeasures [12, 36] have been demonstrated
to identify suspicious requests for CPU exhaustion by pro-
filing resource usages. Rampart [36] measures per-function
CPU time for handling individual requests. It is effective in
detecting anomalous requests that incur drastically longer
execution time than normal requests. Node.cure [12] aims
to mitigate event handler poisoning attacks using timeout
exceptions. Node.cure defines wall-clock timeout values for
specific event handlers, so they would not spend more time to
process requests than the defined timeout value.

These two approaches are effective in detecting and mitigat-
ing the described µDoS attack scenarios, but are hardly possi-
ble to generalize further to mitigate other types of µDoS at-
tacks, for the following reasons. First, they profile resource us-
ages either in a too course-grained manner (i.e., per process)—
failed to attribute specific types of resource exhaustion, or
only at a too high level (i.e., application layer)—failed to ac-
curately accommodate system-wide noises such as context
switching and interrupt timing. Second, they fail to handle
µDoS attacks targeting kernel-level resource exhaustion such
as link, network, and transport layers, which rapidly become
popular in recent years (e.g., SegmentSmack and FragmentS-
mack in 2018 [39, 40]). Since commodity operating systems
such as Linux and Windows are monolithic, it is challeng-
ing to profile each network layer in a non-intrusive manner.
SplitStack [4] attempts to overcome this problem by splitting
the network stack layers and profiling each of them. How-
ever, it demands huge kernel modification. Third, they focus
on a single type of hardware resources (i.e., CPU), thereby
failing to provide an accurate view to multiple hardware re-
sources as well as software-abstracted resources such as the
connection pool. Since it is not uncommon to exhaust mul-
tiple resources simultaneously [28], we need better a µDoS
mitigation scheme that can accurately reason about a diverse
set of resource consumption together.

2.3 Hardware Performance Counter (HPC)
HPCs are hardware units to count low-level events of micro-
architecture during runtime [61]. With HPCs, we can effi-
ciently profile various micro-architectural events related to
program execution, such as retired CPU instructions, cache
hits or misses, and branch predictions and misses. The num-
ber of HPC registers, however, is quite small (e.g., four in
Intel CPUs [23] and six in AMD and ARM CPUs [1, 2]) such
that careful scheduling is necessary to fully leverage them to
monitor various events simultaneously.

3 Motivation and Challenges

In this section, we explain our motivation and research goal,
and the challenges we have to overcome.

3.1 Motivation and Research Goal

Although µDoS attacks are serious security threats, we still
lack an effective and general defense mechanism against them
(§2). We believe resource-usage profiling is a promising direc-
tion to cope with µDoS attacks because, regardless of which
tricks they exploit, they eventually aim to exhaust important
system resources. Existing approaches, however, are not ac-
curate enough to figure out the direct relationship between
each request and resource usage in different layers for various
types of resources (§2.2).

ROKI is designed to solve this challenging problem by en-
abling data-driven resource tracking to avoid heavy resource
usage rather than attempting to detect attacks. Since µDoS
attacks exploit benign yet expensive operations or unknown
performance bugs, it is almost impossible to figure out their
intention. Instead, ROKI identifies which data (i.e., network
packets) lead to heavy resource consumption to block or post-
pone processing further packets from the origin. This protects
any type of system resources from potential exhaustion. From
the viewpoint of system resources, whether a packet intended
to attack them is meaningless because in either case they can-
not serve the packet and subsequent ones if they are (almost)
saturated.

3.2 Challenges

Realizing a data-driven resource tracking system, ROKI, is
challenging, especially because we aim to make it highly
accurate, efficient, and universal. We specify the three critical
challenges of ROKI and explain how we tackle each one.

C1. Accurate resource usage tracking at each layer. ROKI
aims to prevent each packet from exhausting system resources
at each network stack layer. This is because some µDoS
attacks (e.g., BlackNurse, SegmentSmack, and FragmentS-
mack [39, 40, 57]) tend to exhaust resources only at a specific
layer, which can be hidden when we solely monitor system-
wide resource usage. ROKI solves this challenge by probing
the resource usage at the entry functions of each layer that
every packet should go through (§4.4).

C2. Efficient resource usage tracking. Per-packet and per-
layer resource usage profiling can induce significant compu-
tation and memory overhead. ROKI solves this challenge by
using HPCs to accurately and efficiently monitor CPU and
memory usage (§4.4).

C3. Universal mitigation. Universal defense mechanisms
against µDoS attacks are necessary to deal with variants or
unknown attacks. Fixing individual problems and monitoring
specific resources cannot achieve such goals. ROKI solves this
challenge by monitoring various system resources at different
layers simultaneously to detect and block suspicious packets
with heavy resource consumption.
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4 ROKI

ROKI is designed with three main design principles: monitor-
ing resource usage in a fine-grained (per-packet and per-layer
in the kernel as well as the application) and unified manner
while minimizing performance overhead. We first explain
ROKI’s threat model and depict its design in detail.
Threat model. ROKI aims to mitigate µDoS attacks with
low capacity, slow speed, and benign looking. Considering a
large volume of network traffic, i.e., DDoS, and signature- and
behavior-based filtering are out of its scope. Different coun-
termeasures [38, 54, 65] can be used to deal with them. ROKI
differentiates and blocks each suspicious host according to its
IP address, implying that it might be vulnerable to IP spoofing
attacks. Preventing IP spoofing attacks is a challenging prob-
lem requiring other advanced mechanisms (e.g., ingress and
egress filtering [48] or IP authentication header [27]). We plan
to adopt such mechanisms to make ROKI be robust against
IP spoofing. Lastly, since ROKI relies on HPCs to profile re-
source usages, it requires either bare-metal machines [3, 44]
or virtualized performance counters [20].

4.1 Overview
Figure 1 shows a design overview of ROKI. ROKI consists
of three components: resource profiler, system watchdog,
and data handler. The resource profiler, the main compo-
nent of ROKI, monitors the resource usages for handling each
packet at each layer of the network stack, including the link,
network, transport, and application layers. To achieve this
goal, the resource profiler injects probing code into all of
the layers to keep track of resource usage. The probing code
leverages HPCs to efficiently profile resource usage, such
as performance monitoring unit (PMU) and memory band-
width monitoring (MBM). The data handler retrieves per-
packet resource-tracking information for further analysis and
resource-exhaustion mitigation, such as temporal blocks on
suspicious clients that routinely send expensive packets.

4.2 Components
We explain the three main components of ROKI: resource
profiler, system watchdog and data handler. They run asyn-
chronously to minimize performance degradation.
Resource profiler. The resource profiler monitors the re-
source consumption of each packet throughout the system, fol-
lowing its data flow from the link layer to the application layer.
To avoid directly modifying the Linux kernel and server ap-
plications, we implemented the resource profiler on top of the
bcc framework [24] along with customization for MBM trac-
ing. The bcc project seamlessly integrates probing technolo-
gies (e.g., kprobe, uprobe, usdt, and eBPF [10, 14, 15, 19, 35])
into a single framework, which helps us write the tracing
code.

Figure 1: Design overview. ROKI consists of resource profiler, sys-
tem watchdog, and data handler. It performs data-oriented resource
profiling with HPCs while blocking suspicious clients based on pro-
filing results.

During initialization, the resource profiler populates eBPF
code into probing points located at the entry and exit points
of each layer. The inserted code reads the PMU and MBM
counters whenever a packet hits any of these probing points,
calculates the difference between the two probing points of
every protocol layer, and stores them in a key-value store.
Whenever a packet is completely processed, its profiling result
is delivered to the resource profiler running in user space.

System watchdog. The system watchdog monitors system-
wide resources to selectively activate blocking. A small
Python module periodically checks system-wide CPU and
virtual memory usage, and the number of established connec-
tions. Based on the given thresholds for each system-wide
resource, the watchdog activates the data handler’s blocking
feature when it observes any suspicious resource usage. Later,
if ROKI remedies an attack such that the resource pressure is
relieved, the watchdog deactivates the blocking function to
minimize benign clients who encounter the block.

Data handler. The data handler has the two roles: logging
and blocking. Logging allows an administrator to analyze the
behaviors of attacks during real time or off time. Also, the
data handler blocks suspicious clients. Using the mitigation
algorithm discussed in §4.5, the data handler examines clients
with corresponding profiling information to decide what client
among them should be blocked.

We used passive and active approaches together to block a
certain client. Once ROKI determines a client as suspicious,
the data handler spawns a thread to block the client asyn-
chronously. The blocking thread first blocks the suspicious IP
address with iptables [42] or nftables [43], and then actively
disconnects established sessions with the blocked IP address
by injecting a shutdown system call into the target process that
manages the sessions via Frida [50]. After the blocking time
configured by the administrator passes, the thread unblocks
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Figure 2: Overall workflow. When ROKI begins, it compiles and
populates eBPF code at the entry points of each network layer, which
reads PMU and MBM counters whenever packets hit the probing
points. These values are conveyed via a ring buffer to the user space
daemon of ROKI. Based on these profile results, ROKI determines
what client is suspicious and blocks it for given seconds.

Layer Entry functions

Application
Apache ap_invoke_handler, ssl_hook_pre_connection

Transport
TCP tcp_v4_rcv

UDP udp_rcv

ICMP icmp_rcv

Network ip_rcv

Link __netif_receive_skb

Table 1: Probing points used by ROKI. For the transport layer,
ROKI uses three probing points: tcp_v4_rcv, udp_rcv and icmp_rcv.
ap_invoke_handler and ssl_hook_pre_connection are used by
Apache, as probing points for the application layer.

the client.

4.3 End-to-end Workflow

Figure 2 shows a detailed workflow of ROKI. First, ROKI
starts with basic policies including the default blocking time,
inspecting window period, whitelist, system resource thresh-
olds for turning on and off the resource profiler, and resource
thresholds to restrict the resource usage of each host. Then,
the system watchdog and the resource profiler start to monitor
system-wide resources and per-packet resource usage, respec-
tively. If the watchdog detects abnormal activities against
the given policies for those system resources, it activates the
blocking function of the data handler.

The resource profiler monitors the kernel and the target
application simultaneously but asynchronously. More specif-
ically, it consists of two threads that listen to the kernel and
application, respectively. During initialization, the resource
profiler installs eBPF code into probing points, i.e., the entry
functions of each layer, shown in Table 1.

Once a packet arrives at the server, it is processed through-
out each layer of the network stack in order where ROKI

1 int will_enter_net_transport_layer(struct pt_regs *ctx)
2 {
3 u32 cpu = bpf_get_smp_processor_id();
4 PacketData* packet_data = packet_data_percpu.lookup(&cpu);
5 if (!packet_data || !packet_data->src_addr)
6 return 0;
7

8 u64 value = 0;
9 value = instructions.perf_read(cpu);

10 packet_data->instructions[NET_LAYER_TRANSPORT] = value;
11

12 value = mbm.perf_read(cpu);
13 packet_data->mbm[NET_LAYER_TRANSPORT] = value;
14 return 0;
15 }
16

17 int will_leave_net_transport_layer(struct pt_regs *ctx)
18 {
19 u32 cpu = bpf_get_smp_processor_id();
20 PacketData* packet_data = packet_data_percpu.lookup(&cpu);
21 if (!packet_data || !packet_data->src_addr)
22 return 0;
23

24 u64 from = data->instructions[NET_LAYER_TRANSPORT];
25 u64 diff = from ? instructions.perf_read(cpu) - from : 0;
26 packet_data->instructions[NET_LAYER_TRANSPORT] = diff;
27

28 from = data->mbm[NET_LAYER_TRANSPORT];
29 diff = from ? mbm.perf_read(cpu) - from : 0;
30 packet_data->mbm[NET_LAYER_TRANSPORT] = diff;
31 return 0;
32 }

Figure 3: Simplified eBPF code snippet that profiles resource usage
at the transport layer. It invokes the perf_read to retrieve PMU and
MBM values. To keep consistency, we extended the bcc framework
to allow accessing the MBM counter.

populates eBPF code. When a packet hits a probing point,
the eBPF code resolves the IP address of the packet first,
reads the PMU and MBM counters afterward, and stores the
counts as initial values in a key-value store at the end. Fig-
ure 3 shows the simplified code that performs this process
at the transport layer in the kernel. If the server has multi-
ple active CPU cores, it needs multiple key-value stores for
each core. The initial value in the key-value store is used to
calculate resource usage for a single network layer when the
processing packet leaves the current layer or proceeds to the
next layer. Since the CPU core used to process a packet may
change, we also monitor this activity via a separate probe for
finish_task_switch(). When a CPU switch occurs, we cal-
culate intermediate resource usage on the leaving core, save
the intermediate result in the key-value store, and aggregate
resource usage on the switched core into it later. Likewise,
by installing an additional probe for inet_csk_accept(), we
monitor the number of connections newly established for a
client while a request sent by the client is processed. All of the
profiling information will be conveyed to the user-space data
handler via a ring buffer for further analysis and mitigation.

The data handler groups per-packet profiled data from the
resource profiler based on the IP address, and holds them in a
key-value store. Meanwhile, it discards stale data in the key-
value store according to configuration. To decide which client
is suspicious, the data handler uses the algorithm described
in §4.5. With the data received in the past, the handler ranks
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IP addresses per resource and determines which client ranks
at the top in terms of each resource usage. If the sum of
resource usage of the top ranked IP violates a policy that the
administrator sets, the data handler concludes that the top
ranked address is suspicious and prevents the corresponding
client from accessing the server for a while. The data handler
uses passive and active approaches for this temporal blocking:
updating iptables rules to block the suspicious IP address and
forcefully disconnecting already established sessions.

4.4 Data-oriented Resource Usage Profiler

For each packet entering into a server, ROKI tracks how many
resources have been used to process them by following its data
flow within the server from the link layer to the application
layer. A naïve approach to achieve this goal is to instrument
all functions that receive a network packet as input to profile
resource usage, which results in too many changes and heavy
performance overhead. Rather, ROKI focuses on the entry
functions of each layer (e.g., ip_rcv, tcp_v4_rcv) that every
network packet goes through [58]. By measuring resource
usage at the entry functions of different layers and comparing
them, ROKI is able to determine how many resources have
been utilized for each packet at each layer. Also, instead of
directly modifying or instrumenting the entry functions, ROKI
uses the Linux kernel’s tracing functionalities (e.g., kprobe,
uprobe, and eBPF [10, 14, 19, 35]) to dynamically inject prob-
ing code to them (§5). This flexible approach allows much
portability for developers to apply ROKI to any distributed
system beyond a single end point machine by defining data to
track across the distributed system.

To accurately and efficiently profile resource usage, ROKI’s
probing code uses the PMU to measure how many CPU in-
structions were retired and the MBM to measure how much
memory was accessed during processing each packet.

4.5 Mitigating Resource-exhaustion

The data handler and resource profiler of ROKI work together
to mitigate system resource exhaustion resulting from po-
tential µDoS attacks, by temporarily blacklisting suspicious
clients identified by ROKI that heavily occupy system re-
sources. Our approach consists of two main steps: (1) identi-
fying which client uses resources the most and (2) determining
if its resource usage violates an administrator’s policy. When
a packet arrives on the server, ROKI profiles how it affects
system resource usage and maintains this information for each
client that has a unique IP address. The gathered data is kept
for a certain time frame determined by an administrator. Then,
ROKI ranks the clients according to how many resources they
have used. We anticipate that the top-ranked client will con-
tinuously spend many resources as usual such that it is the
most beneficial candidate to blacklist.

The next step is to determine whether the resource usage
of the top-ranked client violates the given policies by admin-
istrators. Since ROKI always monitors the resource usages
of each request, it can calculate average resource usages to
determine reasonable threshold. Administrators would use
static or dynamic threshold to determine suspicious clients.
For simplify, this paper assumes that they use static threshold.

It is worth noting that blocking clients based on resource
usage is mainly to keep a server live longer, not for detecting
µDoS attacks. ROKI blocks clients only when the server is
almost out of resources, implying that the server eventually
fails to serve further requests from other clients. In addition,
those temporarily blocked clients can always retry the failed
requests later when the server is no longer busy.

5 Implementation

We implemented ROKI for securing the Apache (v2.2.13 and
v2.4.18) running in a Linux machine (Fedora 27 powered
by kernel version 4.13.9). Note that we consider multiple
versions of Apache to reproduce µDoS attacks with their
original targets. ROKI is implemented with 2,522 lines of
Python code and 2,953 lines of C-like eBPF code. We will
open source the entire code of ROKI.

6 Evaluation

In this section, we evaluate ROKI to answer the following
three questions:

• Attack detection: How effective is ROKI in detecting
real-world µDoS attacks targeting CPU (§6.1.1), mem-
ory (§6.1.2), and connection pool (§6.1.3)?

• Quality of Service (QoS): How effective is ROKI in
maintaining latency? (§6.2)

• Performance overhead: How much performance over-
head does ROKI incur to profile packets? (§6.3)

Experimental setup. We evaluated ROKI in a 1GbE local
network that consists of four machines, acting as server, at-
tacker, benign client, and latency monitor. The victim server
protected by ROKI had two Intel Xeon E5-2687W v4 CPUs
(24 cores, 3GHz) and 252 GB of memory. The server ran
Linux kernel version 4.13.9. In our evaluation, we intention-
ally enabled only four cores of the server to easily exhaust
it unless otherwise stated. The attacker machine had an Intel
Xeon CPU E7-4820 CPU (16 cores, 2GHz) and 125 GB of
memory. The benign client machine was equipped with an
Intel Core i7-6600U CPU (4 cores, 2.6GHz) and 19 GB of
memory. The latency monitor machine had an Intel Xeon
CPU E7-4820 CPU (16 cores, 2GHz) and 252 GB of mem-
ory. To check response time, the monitor periodically sent the
server an ApacheBench (ab) request every 0.5 seconds and
calculated the round-trip time.
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Configuration Default value

Blocking time 5 seconds
Windowing time for inspection 3 seconds
Monitoring interval for system resource 0.1 seconds
Ring buffer size per core 16 MB
Conditions to enable/disable Resource Profiler

CPU usage 75% / 35%
Memory usage 75% / 50%
Connection pool 75% / 35%

Instruction Thresholds
Application 300,000
Transport 45,000,000,000
Network 1,000,000,000
Link 80,000,000,000

MBM Thresholds
Application 1,000,000,000
Transport 50,000,000,000
Network 500,000,000
Link 1,500,000,000,000

Connection Threshold 6

Table 2: Default configuration used for our evaluation.

Default configuration. ROKI is fully configurable for admin-
istrators in terms of its blocking period, windowing time for
inspection, system resource monitoring period for the watch-
dog, and thresholds for each network layer. We summarize
the configuration used for our evaluation in Table 2.

Interpretation of experimental results. Before diving into
each experiment in detail, we explain how to interpret the pro-
filing results from ROKI. Figure 4 shows the CPU utilization
of the server (i.e., the number of retired CPU instructions)
for handing individual network packets at each network layer
under Apache Range Header attacks profiled by ROKI. We
monitored the server for 60 seconds where the µDoS attack
was conducted. Here, gray dots represent the packets from the
attacker machine and black dots represent the packets from
the benign client machine and the latency monitor. The top-
most plot, which indicates the latency measured at the latency
monitor, is provided for reference and not used by ROKI for
detection and mitigation. When ROKI was fully initialized,
the benign client started sending requests to the server from
the 5.5th second (black dots) and the attacker started the at-
tack from the 8.5th second (gray dots) and repeated it every
4.5 seconds. Each attack lasted for 3 seconds. During the
attack, the server could not handle benign requests such that
its latency increased. However, in respite from the attack, it
restarted serving benign requests.

By carefully analyzing the result, we found that the server
utilized more CPU resources for handling the packets from the
Apache Range Header attack than those for handing benign
packets at the application layer. Thus, by blocking the clients
sending expensive packets, ROKI has a chance to mitigate
this µDoS attack.

Figure 4: Apache Range Header attack profiled by ROKI without
intervention. Gray and black dots represent the number of retired
CPU instructions for handling each packet from the attacker and
benign client at each layer, respectively. The server’s latency, system
CPU usage, and number of instructions used in the four network
layers are displayed in order from the top-most plot.

6.1 Mitigating Real-world µDoS Attacks

To know the effectiveness of ROKI, we reproduce three repre-
sentative real-world attacks, FragmentSmack (CPU), Apache
Range Header (memory), and Slowloris (connection pool),
against a server protected by ROKI.

6.1.1 FragmentSmack

FragmentSmack [40] is a CPU exhaustion attack that exploits
a performance bug in reassembling IP fragments at the net-
work layer. In the Internet, senders can break large packets
(i.e., bigger than the maximum transmission unit) into a num-
ber of fragments, which will be reassembled by receivers in
regular sequence. Until the entire fragments arrive, receivers
have to queue arrived fragments while arranging them in or-
der according to their offset values. FragmentSmack aims to
prolong this process by creating and transmitting small frag-
ments with arbitrary offsets while discarding last fragments,
whose value of the more fragment (MF) bit is zero, to prohibit
complete packet reconstruction.
Methodology. We reproduced FragmentSmack according
to [37, 40, 51, 52]. With Scapy [49], we created 64 KB
UDP packets and broke them into 8 B fragments with the
same ID but arbitrary offsets. Then, we used 64 workers
to transmit the fragments to a victim concurrently in arbi-
trary order while discarding fragments with MF=0. Single
IP FragmentSmack saturates one CPU core [51], so, in this
experiment, we activated two cores of the victim server for
resource saturation. We increased the high and low thresh-
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Figure 5: FragmentSmack under ROKI’s protection.
FragmentSmack attacks the IP fragment reassembly at the
network layer. ROKI detects its heavy resource usage at the network
layer and blocks it.

old for IP fragmentation, net.ipv4.ipfrag_high_thresh and
net.ipv4.ipfrag_low_thresh, to 64 MB and 48 MB, respec-
tively, at the victim server to make it have a queue long
enough to incur busy defragmentation. Instead of iptables
that does not handle fragments, we used nftables [43] to block
the source IP addresses of suspicious fragments.
Experimental results. Figure 5 shows how ROKI mitigated
FragmentSmack. The victim server received benign requests
from the 6th second and malicious requests from the 15th
second. As fragments from the attacker were queued, we ob-
served that the victim’s CPU usage increased. ROKI blocked
the origin of these fragments at the 25th second because they
consumed CPU beyond the given threshold at the network
layer. During the blocking period, the victim server was able
to serve benign requests because nftables discarded malicious
fragments as soon as they arrived.

6.1.2 Apache Range Header attack

The Apache Range Header attack [17] is a µDoS attack that
overloads the CPU and memory of a victim server by exploit-
ing a protocol design flaw in the Apache web server. More
specifically, the HTTP protocol allows a client to request mul-
tiple overlapped ranges in a single request, which makes the
server perform large fetches that are inefficiently kept in mem-
ory. Although the Apache Range Header attack exhausts both
CPU and memory, we focus on memory implication of the
attack in our evaluation.
Methodology. We used the Apache Killer script [29] against
httpd-2.2.13 which is vulnerable to the Apache Range Header
attack. For this experiment, we used ten-second blocking
periods to clearly see ROKI’s effectiveness.
Experimental results. Figure 6 shows how ROKI mitigated
the Apache Range Header attack. When malicious requests
arrived in the server at the 8th second, ROKI successfully de-
tected the abnormal memory movement in the application
layer via high MBM values even before the overall system
memory usage increased. The suspicious IP was blocked at

block

Figure 6: The Apache Range Header attack exhausting memory in
the application layer. ROKI prevented this attack from exhausting
the system memory.

Figure 7: The Apache Range Header attack profiled by ROKI with-
out blocking. The system memory usage kept increasing due to the
attack.

the 8th second, but the active memory of the system increased
during the blocking period. This was because the server had
to process arrived requests before the IP was blocked. How-
ever, the active memory steadily decreased later (i.e., after the
14th second) until the next attack arrived. Without ROKI, the
overall memory usage kept increasing (Figure 7).

6.1.3 Slowloris

The Slowloris attack [8] aims to occupy as many connections
as possible to prohibit establishing further benign connections,
by sending partial requests that do not complete.
Methodology. To reproduce Slowloris, we applied the
Slowloris script [22] against httpd-2.4.18. We used net-
stat [60] for checking the total number of established con-
nections. We also counted the number of new connections for
each client, as explained in §4.3.
Experimental results. Figure 8 shows how ROKI mitigates
the Slowloris attack. The benign requests (gray bars) that
appeared since the 6th second consistently made a single
connection. In contrast, the malicious requests (blue bars) that
appeared since the 10th second abnormally established many
connections in a very short time. This difference allowed
ROKI to detect the malicious requests. Once the attacker was
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Figure 8: ROKI detected Slowloris by counting newly established
connections in real time. Gray and blue bars represent the number
of established connections with a benign client and an attacker, re-
spectively. After ROKI blocked the attack at the 10th second, the
connections from the attacker were closed such that the benign client
could make new connections from the 14th second.

identified, ROKI actively withdrew suspicious connections
and injected a shutdown system call into web server processes
via Frida [50]. The number of established connections kept
decreasing from the 10th second to the 15th second, and ROKI
served the benign client from the 14th second until the next
attack occurred at the 26th second.

6.2 Latency versus Failure Rate

ROKI maintains good QoS even when a server is fully sat-
urated with µDoS attacks or other benign but expensive re-
quests by selectively blocking clients who consume the most
resources. To verify whether ROKI satisfies this goal, we con-
ducted an experiment to see how the average latency and
failure rate (i.e., request drop rate) vary according to the load
of a web server protected by ROKI. The server was serving
mirrored Wikipedia pages [63], and multiple clients from 1 to
15 concurrently requested random Wikipedia pages from the
server for 30 seconds. We emphasize that we set no attacker in
this experiment because µDoS attacks can be constituted with
legitimately formatted packets so differentiating attacker’s
packets from benign ones is not ROKI’s main concern. We
measured (1) the average latency only for successful requests
(i.e., requests not dropped by ROKI) and (2) the failure rate
(i.e., requests dropped by ROKI). Figure 9 shows the results.
ROKI started to drop some requests when the number of con-
current clients was larger than 2. Without ROKI, the average
latency of the server sharply increased in proportion to the
number of concurrent clients. However, with ROKI, the slope
was gentle with some failure rates. When the number of con-
current clients was 12, ROKI improved the average latency
by up to 1.67× while dropping 16.2% of requests (122 out
of 753 requests). This shows ROKI maintains QoS well by
dropping some requests as expected. Interestingly, when the

Figure 9: Average latency versus request failure rate with the in-
creasing number of concurrent clients. ROKI maintains reasonable
latency for clients even when a server is throttled. Whenever the
system is under exhaustive resource uses, ROKI drops the most ex-
pensive requests at the moment, which indeed help system’s resource
allocation and so the QoS of the service.

number of concurrent clients was larger than or equal to 14, we
observed failed requests even without ROKI due to server sat-
uration, improving the latency. These arbitrary packet drops,
however, are problematic because, usually, there are more nor-
mal clients than attackers (or heavy clients) such that benign
clients would observe more failures compared with the others.

6.3 Profiling Overheads

ROKI’s fine-grained resource accounting unavoidably de-
mands additional CPU and memory resources, resulting in
degraded latency and throughput, and more memory consump-
tion. In this section, we evaluate the profiling overheads by
using Apache Benchmark and calculating additional memory
requirements.
Latency and throughput. We measured how ROKI affected
the latency and throughput of a web server by running http-
2.4.33 on the server machine protected by ROKI and Apache
Benchmark (ab) through a client machine. The web server
enabled 48 cores and was serving a static page. ab kept re-
questing the static page while varying concurrency from 10 to
100, and 512 that was the maximum number of sessions the
web server supported. ROKI does not block any connections
for this microbenchmark to measure its pure profiling over-
head. We repeated each experiment 10 times and averaged
the results. Figure 10 shows the latency and throughput of the
server with and without ROKI whose overhead stably moved
between 3%–5% according to the number of concurrent con-
nections. The minimum overhead in latency was 3.48% when
the number of connections were 60, and the one in through-
put was 3.55% when the concurrent connections were 30. In
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Figure 10: Apache benchmark result with ROKI. The top figure
shows the overhead caused by ROKI in latency and the bottom one
shows the overhead in throughput. Light gray and dark gray bars rep-
resent results without and with ROKI, respectively. ROKI introduced
3.48%–4.82% overhead in latency and 3.55%–4.58% overhead in
throughput while the number of concurrent connections was varied
from 10 to 100.

the worst case where the number of concurrent requests was
512, the overhead in latency was 5.98% and the overhead in
throughput was 4.19%.
Memory overheads. For each IPv6 packet, ROKI requires
126 bytes of per-packet profiling data; meaning that for queu-
ing 100,000 packets for analysis, it requires around 12 MB
of additional memory uses. Currently, ROKI uses a 16 MB
ring buffer for each core to satisfy this requirement. The per-
packet profiling data of kernel space consists of timestamp
(8 B), CPU ID (4 B), source IP address (4 or 16 B), instruction
counters for three layers (3 × 8 B), MBM counters for three
layers (3 × 8 B), and that of userspace has one more field to
store program ID (4 B).

7 Discussion

In this section, we discuss some limitations of ROKI and its
optimal configuration.
Ring buffer overflow. ROKI is not able to comprehensively

analyze or block suspicious packets if a ring buffer overflows.
ROKI uses a ring buffer to deliver per-packet profiling infor-
mation collected at each layer of the in-kernel network stack
to the user-space resource profiler. Since the ring buffer is
finite, it can overflow if too many concurrent packets are de-
livered or the resource profiler does not efficiently consume
profiling information, resulting in data loss. Thus, an admin-
istrator needs to configure the ring buffer’s size sufficiently
to not suffer from buffer overflow unless there is exceptional
network traffic (likely due to a DDoS attack).

As explained in Figure 6.3, the current ring buffer size
ROKI is using, 16 MB is enough to handle normal HTTP
requests. We also want to emphasize that the ring buffer over-
flow does not hurt the server’s normal operations. This is
because it only maintains additional profiling information
used by ROKI not by the kernel or server application.
HPC scalability. The HPC has a limitation in scalability: that
is, the number of performance events it can concurrently moni-
tor is limited. For example, the Intel Xeon E5-2687W v4 CPU
that we use for evaluation supports three fixed-function per-
formance counters and four programmable counters per logi-
cal core [23]. Currently, ROKI only uses two programmable
counters to monitor retired CPU instructions and memory
bandwidth, so it does not suffer from a scalability problem.
If we want to monitor other performance events as well (e.g.,
cache misses and branch instructions) to detect other types
of resource exhaustion, we need to rely on the kernel’s time
multiplexing of HPCs.
Optimal policy. Figuring out the optimal policy to deter-
mine when to block what clients is important. However, the
optimal policy heavily depends on server configurations and
administrators’ performance goal. Without real environment
setup and data, determining the policy makes no sense. Our
best-effort strategy to determine threshold values was calcu-
lating average response time while varying request drop rates
to find acceptable balance between them. We do not claim
that it was the best approach, but we think that it is one of the
feasible approaches to determine acceptable threshold.

8 Related Work

In §2.2, we discuss Rampart [36], Node.cure [12], and Split-
Stack [4] to detect or mitigate µDoS attacks. Apart from these
strategies, other studies inspire us to design and implement
ROKI. We describe them in the rest of this section.
Tracing based profiling techniques. To detect abnormality
in resource usage, ROKI relies on a data-oriented resource
profiling technique that records resource consumption, tracing
unique data. Other researchers also consider how to profile a
system based on tracing techniques for different goals. Mag-
pie [47] models CPU workload in distributed system, tracing
events incurred by a request. After correlating OS level events,
Magpie can figure out CPU usage per request. However, un-
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like ROKI, it is based on event tracing, and relatively coarse-
grained (i.e., no per-layer resource profiling). Also, it does
not profile memory usage. Pip [46] proposed a bug finding
technique for applications running on distributed system by
comparing actual behavior and expected behavior. To check
application behavior, Pip records paths by tracking explicit
path identifiers. Unfortunately, Pip is not helpful to defeat
µDoS attacks whose behavior is almost legitimate. A general
tracing framework was introduced by X-Trace [16]. It enables
reconstruction of user’s task tree and a comprehensive view
across layers and applications. However, it does not deal with
a resource accounting technique to protect the system from
µDoS attacks as ROKI does. Besides, it requires source code
change to embed metadata into target software for tracking.
Retro [25] presents a resource management framework for
a distributed system of which resource is shared by multiple
tenants. It aims to achieve desired performance guarantee
or fairness for each tenant through profiling per-workflow
resource load. Retro’s granularity for resource profiling is
coarser than ROKI’s one, and its per-workflow resource pro-
filing does not work for µDoS attacks since the attack tends
to exhaust resources on an end-point machine. Monitoring
resources across distributed machines hinders the attack from
being detected.
DoS/DDoS defenses. DoS and DDoS attacks aim to send
a large number of packets to a victim server. Especially,
DDoS relies on a large number of zombie machines (or
bots) to generate an excessive volume of network traffic.
Since they are old and popular attacks, many researchers have
already analyzed them and proposed effective countermea-
sures [38, 54, 65]. For example, researchers extract statistical
patterns from the massive attack traffic to generate filtering
rules. Also, they analyze command-and-control traffic be-
tween bots and their masters to take down the botnet. To
defend against DDoS attacks, a large body of research ex-
plored monitoring and mitigation schemes based on packet
signatures. Such schemes include Randomize-Then-Optimize
randomization [64], detecting period pulse [56], spectral anal-
ysis [5], and modeling [32, 53]. Unlike schemes that are de-
signed for specific protocols or rely on packet signatures,
ROKI detects resource exhaustion using data collected from
system performance monitors. DDoS defense mechanisms
can complement ROKI to make a server secure against both
DDoS and µDoS attacks.
µDoS attacks and defenses. Pioneering research on µDoS
attacks [32] demonstrated that a vulnerability in the TCP
timeout mechanism can be exploited with periodic, short-
lived, low-volume traffic. Such attacks can be extended to
Pulsing DoS (PDoS) attacks [34], which exploit the Adaptive-
Increase-Multiplicative-Decrease (AIMD) algorithm imple-
mented in the TCP protocol. The Boarder Gateway Protocol
(BGP), which is used to perform routing sessions on commer-
cial routers, was shown to be vulnerable to µDoS attacks [66].
µDoS attacks have been further generalized as Reduction of

Quality (RoQ) attacks [21], which cause a system to perform
below capacity.

Initial work on µDoS attacks proposed two approaches:
router-assisted and end-point min-Retransmission Time Out
randomization [32]. However, experiments performed in the
initial work on µDoS showed that by limiting the peak rate
and burst length of an attack, the proposed attack could still
severely degrade throughput without being detected by the
popular DoS detection algorithm Random Early Detection,
Preferential Drop (RED-PD) [32].

Vanguard [33] detects µDoS attacks by monitoring anoma-
lies in network events, such as abnormal traffic of outgoing
TCP ACK signals or an imbalance of incoming and outgoing
ACK signals. ROKI mitigates a wider range of attacks than
Vanguard, with low overhead by comprehensively monitoring
resource exhaustion using HPCs.
Hardware-based resource monitoring. Researchers started
to use HPCs for security applications. SlowFuzz [59] aims
to automatically detect the most expensive inputs for diverse,
well-known algorithms by continuously measuring their re-
source usage with HPCs in a domain-independent manner.
That is, it is a proactive approach to find performance bugs of
a program, which can complement ROKI.

Several malware studies [13, 26, 62] use HPCs to check
low-level, accurate behaviors of malware. They monitor a
process with HPCs to determine whether its resource usage
behaviors are similar to the behaviors of known malware. This
line of research, however, needs to be improved because it
is difficult to associate low-level HPC values with high-level
user intention [67]. In contrast, ROKI does not suffer from this
challenging problem because its goal is to determine which
packet consumes many system resources, rather than to infer
some intention from the packet’s resource usage pattern.

9 Conclusion

A µDoS attack is challenging to defeat because of its low ca-
pacity, low speed, and legitimacy. ROKI protects an end-point
server from this sophisticated attack with data-oriented re-
source usage tracking. It accurately monitors resource usages
along the data flow per request, recognizes resource usage
anomalies due to the request, and temporarily block the re-
quest origin in a unified manner. Evaluation shows that ROKI
is effective against real-world µDoS attacks targeting CPU,
memory, and connection pool in either kernel or user space
with acceptable overhead.
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